|
1. Ko, Y.C., et al., Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J Oral Pathol Med, 1995. 24(10): p. 450-3. 2. Margaritescu, C., et al., VEGF and VEGFRs expression in oral squamous cell carcinoma. Rom J Morphol Embryol, 2009. 50(4): p. 527-48. 3. Richard, V. and M.R. Pillai, The stem cell code in oral epithelial tumorigenesis: 'the cancer stem cell shift hypothesis'. Biochim Biophys Acta, 2010. 1806(2): p. 146-62. 4. Shah, N.G., et al., Molecular alterations in oral carcinogenesis: significant risk predictors in malignant transformation and tumor progression. Int J Biol Markers, 2007. 22(2): p. 132-43. 5. Silverman, S., Jr., Demographics and occurrence of oral and pharyngeal cancers. The outcomes, the trends, the challenge. J Am Dent Assoc, 2001. 132 Suppl: p. 7S-11S. 6. Hsu, S.Y., et al., The three subfamilies of leucine-rich repeat-containing G protein-coupled receptors (LGR): identification of LGR6 and LGR7 and the signaling mechanism for LGR7. Mol Endocrinol, 2000. 14(8): p. 1257-71. 7. Hsu, S.Y., S.G. Liang, and A.J. Hsueh, Characterization of two LGR genes homologous to gonadotropin and thyrotropin receptors with extracellular leucine-rich repeats and a G protein-coupled, seven-transmembrane region. Mol Endocrinol, 1998. 12(12): p. 1830-45. 8. Hsu, S.Y., New insights into the evolution of the relaxin-LGR signaling system. Trends Endocrinol Metab, 2003. 14(7): p. 303-9. 9. Carmon, K.S., et al., R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling. Proc Natl Acad Sci U S A, 2011. 108(28): p. 11452-7. 10. Luo, C.W. and A.J. Hsueh, Genomic analyses of the evolution of LGR genes. Chang Gung Med J, 2006. 29(1): p. 2-8. 11. Schoneberg, T., G. Schultz, and T. Gudermann, Structural basis of G protein-coupled receptor function. Mol Cell Endocrinol, 1999. 151(1-2): p. 181-93. 12. Yamamoto, Y., et al., Overexpression of orphan G-protein-coupled receptor, Gpr49, in human hepatocellular carcinomas with beta-catenin mutations. Hepatology, 2003. 37(3): p. 528-33. 13. Tanese, K., et al., G-protein-coupled receptor GPR49 is up-regulated in basal cell carcinoma and promotes cell proliferation and tumor formation. Am J Pathol, 2008. 173(3): p. 835-43. 14. Uchida, H., et al., Overexpression of leucine-rich repeat-containing G protein-coupled receptor 5 in colorectal cancer. Cancer Sci, 2010. 101(7): p. 1731-7. 15. Yamanoi, K., et al., Overexpression of leucine-rich repeat-containing G protein-coupled receptor 5 in gastric cancer. Pathol Int, 2013. 63(1): p. 13-9. 16. Barker, N. and H. Clevers, Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology, 2010. 138(5): p. 1681-96. 17. Barker, N., et al., Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 2007. 449(7165): p. 1003-7. 18. Van der Flier, L.G., et al., The Intestinal Wnt/TCF Signature. Gastroenterology, 2007. 132(2): p. 628-32. 19. Segditsas, S., et al., Putative direct and indirect Wnt targets identified through consistent gene expression changes in APC-mutant intestinal adenomas from humans and mice. Hum Mol Genet, 2008. 17(24): p. 3864-75. 20. Thorpe, C.J., et al., Wnt signaling polarizes an early C. elegans blastomere to distinguish endoderm from mesoderm. Cell, 1997. 90(4): p. 695-705. 21. Rocheleau, C.E., et al., Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell, 1997. 90(4): p. 707-16. 22. Polakis, P., The adenomatous polyposis coli (APC) tumor suppressor. Biochim Biophys Acta, 1997. 1332(3): p. F127-47. 23. Sakanaka, C., J.B. Weiss, and L.T. Williams, Bridging of beta-catenin and glycogen synthase kinase-3beta by axin and inhibition of beta-catenin-mediated transcription. Proc Natl Acad Sci U S A, 1998. 95(6): p. 3020-3. 24. Zeng, L., et al., The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell, 1997. 90(1): p. 181-92. 25. Hecht, A., et al., The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. EMBO J, 2000. 19(8): p. 1839-50. 26. Takemaru, K.I. and R.T. Moon, The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression. J Cell Biol, 2000. 149(2): p. 249-54. 27. He, T.C., et al., Identification of c-MYC as a target of the APC pathway. Science, 1998. 281(5382): p. 1509-12. 28. Shtutman, M., et al., The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A, 1999. 96(10): p. 5522-7. 29. Roose, J., et al., Synergy between tumor suppressor APC and the beta-catenin-Tcf4 target Tcf1. Science, 1999. 285(5435): p. 1923-6. 30. He, T.C., et al., PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell, 1999. 99(3): p. 335-45. 31. Wielenga, V.J., et al., Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am J Pathol, 1999. 154(2): p. 515-23. 32. Zhang, Z., et al., Secreted frizzled related protein 2 protects cells from apoptosis by blocking the effect of canonical Wnt3a. J Mol Cell Cardiol, 2009. 46(3): p. 370-7. 33. Lustig, B., et al., Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol, 2002. 22(4): p. 1184-93. 34. Batlle, E., et al., Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell, 2002. 111(2): p. 251-63. 35. Bienz, M. and H. Clevers, Linking colorectal cancer to Wnt signaling. Cell, 2000. 103(2): p. 311-20. 36. Schneikert, J. and J. Behrens, The canonical Wnt signalling pathway and its APC partner in colon cancer development. Gut, 2007. 56(3): p. 417-25. 37. Goss, K.H. and J. Groden, Biology of the adenomatous polyposis coli tumor suppressor. J Clin Oncol, 2000. 18(9): p. 1967-79. 38. Markowitz, S.D. and M.M. Bertagnolli, Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med, 2009. 361(25): p. 2449-60. 39. Clevers, H., Wnt/beta-catenin signaling in development and disease. Cell, 2006. 127(3): p. 469-80. 40. Albuquerque, C., et al., The 'just-right' signaling model: APC somatic mutations are selected based on a specific level of activation of the beta-catenin signaling cascade. Hum Mol Genet, 2002. 11(13): p. 1549-60. 41. Glinka, A., et al., LGR4 and LGR5 are R-spondin receptors mediating Wnt/beta-catenin and Wnt/PCP signalling. EMBO Rep, 2011. 12(10): p. 1055-61. 42. de Lau, W., et al., Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature, 2011. 476(7360): p. 293-7. 43. McClanahan, T., et al., Identification of overexpression of orphan G protein-coupled receptor GPR49 in human colon and ovarian primary tumors. Cancer Biol Ther, 2006. 5(4): p. 419-26. 44. Takahashi, H., et al., Significance of Lgr5(+ve) cancer stem cells in the colon and rectum. Ann Surg Oncol, 2011. 18(4): p. 1166-74. 45. Barker, N., et al., Crypt stem cells as the cells-of-origin of intestinal cancer. Nature, 2009. 457(7229): p. 608-11. 46. Morita, H., et al., Neonatal lethality of LGR5 null mice is associated with ankyloglossia and gastrointestinal distension. Mol Cell Biol, 2004. 24(22): p. 9736-43. 47. Barker, N., et al., Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell, 2010. 6(1): p. 25-36.
|