跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/04 20:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃馨瑩
研究生(外文):Hsin Ying Huang
論文名稱:鵝兒腸之化學以及生物活性成分研究
論文名稱(外文):Studies on the Chemical and Bioactive Constituents of Stellaria aquatica (L.) Scop.
指導教授:謝珮文謝珮文引用關係
指導教授(外文):P. W. Hsieh
學位類別:碩士
校院名稱:長庚大學
系所名稱:中醫學系天然藥物
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
論文頁數:171
中文關鍵詞:鵝兒腸石竹科繁縷屬嗜中性白血球抗發炎
外文關鍵詞:Stellaria aquaticaCaryophyllaceaeStellariaNeutrophilanti-inflammatiom
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鵝兒腸(Stellaria aquatica L. Scop.)為石竹科(Caryophyllaceae)繁縷屬(Stellaria),屬於多年生草本植物,廣布在北半球溫帶地區。過去的研究指出,繁縷屬植物所分離到的化合物之化學結構有cyclopeptides、flavonoids及β-carbolines三大類。本研究將鵝兒腸的甲醇萃取物分別以正丁醇、正己烷以及水進行分配萃取,共得到三個劃分層。生物活性研究方面,鵝兒腸之正丁醇層、正己烷層及水層在10 µg/mL濃度下對於嗜中性白血球之超氧自由基的抑制百分比分別為62.57 %、44.59 % 及2.98 %,顯示其正丁醇層為活性層。故使用管柱層析法進行其正丁醇層的化學及活性成分分析及純化。至目前得到十二個化合物,經由光譜分析並確認結構為3-methoxy-4-hydroxy dihydrocinnamic acid methyl ester (1)、methyl 2-benzamido-3-phenylpropanoate (2)、4-quinolone (3)、2-methoxy-1,4- dihydroxybenzene (4)、dihydroferulic acid (5)、syringic acid (6)、vanillic acid (7)、N-benzoyl-L-phenylalaniol (8) 、aurantiamide (9) 、acacetin (10)、p-hydroxybezoic acid (11) 和corchoionol C (12)。其中,化合物 2、6 及10能夠抑制嗜中性白血球生成超氧自由基,其IC50值分別為12.06、23.24和0.88 µM。
Stellaria aquatica L. Scop., one species of Stellaria plants (Caryophyllaceae), is mainly growing in temperate regions of northern hemisphere. In the previous research, flavonoids, β-carbolines and cyclopeptides were isolated from this genus. In present study, the MeOH extracts was partitioned in n-BuOH, n-Hexane and H2O. Of these, the n-BuOH, n-Hexane and water soluble layers showed 62.57 %, 44.59 % and 2.98 % inhibition against superoxide generation of human neu- trophils induced by fMLP at 10 µg/mL. Therefore, the n-BuOH layer was further studied on their chemical and bioactive compounds by column chromatography. Herein, twelve compounds were isolated from the n-BuOH layer and the structures were determined as 3-methoxy-4-hydroxydihydrocinnamic acid methyl ester (1), methyl 2-benzamido-3-phenylpropanoate (2), 4-quinolone (3), 2-methoxy- 1,4-dihydroxy-benzene (4), dihydroferulic acid (5), syringic acid (6), vanillic acid (7), N-benzoyl-L-phenylalaniol (8), aurantiamide (9), acacetin (10), p-hydroxybezoic acid (11) and corchoionol C (12) by spectroscopic analysis. Among these compounds, compound 2, 6 and 10 showed inhibition against superoxide generation of human neutrophils induced with fMLP with IC50 values of 12.06, 23.24 and 0.88 μM.
指導教授推薦書……………………………………………………....
口試委員審定書……………………………………………………....
授權書……………………………………………………………….…iii
誌謝…………………………………………………………….………iv
中文摘要……………………………………………………………......v
英文摘要…………………………………………………………….....vi
目錄……………………………………………………………………vii
圖表目錄…………………………………………………………….…ix
第一章 緒論
第一節 前言……………………………………………..……1
第二節 植物型態與分布…………………………………..…3
第三節 文獻回顧………………………………………..……5
第四節 研究目的……………………………………..……..32
第二章 研究材料與方法
第一節 實驗器材………………………………………..…..33
第二節 研究材料之分離與純化………………………..…..36
第三節 抗發炎活性測試………………………………..…..46
第三章 結果與討論
第一節 化合物的結構証明……………………………..…..49
第二節 抗發炎活性測試結果……...…………………..….116
第三節 正丁醇層各fraction之抗發炎活性測試……….....117
第四節 化合物之抗發炎活性測試…..................................120
第五節 結果與討論…………………………………...…...122
第四章 結論…………………………………….……..……..….131
參考文獻………………………………………………………..……132
附錄………………………………………………………………..…143 
圖表目錄
圖目錄
圖1-2-1 鵝兒腸植株圖………………………………………..……...4
圖3-3-1 3-Methoxy-4-hydroxydihydrocinnamic acid methyl ester (1)
之MASS 圖譜.....................................................................51
圖3-3-2 3-Methoxy-4-hydroxydihydrocinnamic acid methyl ester (1)
的 UV光譜………………………………………………..51
圖3-3-3 3-Methoxy-4-hydroxydihydrocinnamic acid methyl ester (1)
的IR光譜…………………………… ……………………52
圖3-3-4 3-Methoxy-4-hydroxydihydrocinnamic acid methyl ester (1)
之1H-NMR 光譜(400 MHz, CDCl3)..................................52
圖3-3-5 3-Methoxy-4-hydroxydihydrocinnamic acid methyl ester (1)
之13C-NMR 光譜(100 MHz, CDCl3)……………...……..53
圖3-3-6 3-Methoxy-4-hydroxydihydrocinnamic acid methyl ester (1)
之COSY 光譜 (400 MHz, CDCl3)……………...……….53
圖3-3-7 3-Methoxy-4-hydroxydihydrocinnamic acid methyl ester (1)
之HSQC 光譜 (400 MHz, CDCl3)……………...……….54
圖3-3-8 3-Methoxy-4-hydroxydihydrocinnamic acid methyl ester (1)
之HMBC光譜 (400 MHz, CDCl3)……………..…..…….54
圖3-3-9 3-Methoxy-4-hydroxydihydrocinnamic acid methyl ester (1)
的COSY及selected HMBC correlations…………….…...55
圖3-3-10 Methyl 2-benzamido-3-phenylpropanoate (2) 的MASS光
譜………………………………………………………....59
圖3-3-11 Methyl 2-benzamido-3-phenylpropanoate (2) 的UV光譜
…………………………………………………………....60
圖3-3-12 Methyl 2-benzamido-3-phenylpropanoate (2) 的IR光譜
……………………………………………………………60
圖3-3-13 Methyl 2-benzamido-3-phenylpropanoate (2) 之1H-NMR
光譜(400 MHz, CDCl3)……..……..……………..………61
圖3-3-14 Methyl 2-benzamido-3-phenylpropanoate (2) 之13C-NMR
光譜(100 MHz, CDCl3)……………………………..……61
圖3-3-15 Methyl 2-benzamido-3-phenylpropanoate (2) 之COSY 光
譜(400 MHz, CDCl3)…………………………..…………62
圖3-3-16 Methyl 2-benzamido-3-phenylpropanoate (2) 之HSQC 光
譜(400 MHz, CDCl3)………………………………..……62
圖3-3-17 Methyl 2-benzamido-3-phenylpropanoate (2) 的HMBC 光
譜(400 MHz, CDCl3)………………………………..……63
圖3-3-18 Methyl 2-benzamido-3-phenylpropanoate (2) 的COSY及
selected HMBC correlations…………………………..….63
圖3-3-19 4-Quinolone (3) 的MASS光譜………………………….67
圖3-3-20 4-Quinolone (3) 的UV光譜…………………………......67
圖3-3-21 4-Quinolone (3) 的IR光譜……………………..……..…68
圖3-3-22 4-Quinolone (3) 之1H-NMR 光譜 (400 MHz, DMSO-d6)
…………………………………………………………....68
圖3-3-23 4-Quinolone (3) 之13C-NMR 光譜 (100 MHz, DMSO-d6)
...……………………………………………………...…..69
圖3-3-24 4-Quinolone (3) 之COSY 光譜 (400 MHz, DMSO-d6)..69
圖3-3-25 4-Quinolone (3) 之HSQC 光譜 (400 MHz, DMSO-d6)..70
圖3-3-26 4-Quinolone (3) 的HMBC 光譜 (400 MHz, DMSO-d6).70
圖3-3-27 4-Quinolone (3) 的COSY及selected HMBC correlations
……………………………………………………………71
圖3-3-28 2-Methoxy-1,4-dihydroxybenzene (4) 的UV光譜……...74
圖3-3-29 2-Methoxy-1,4-dihydroxybenzene (4) 的IR光譜….....…74
圖3-3-30 2-Methoxy-1,4-dihydroxybenzene (4) 的1H-NMR 光譜
(400 MHz, Acetone-d6) ………………………………….75
圖3-3-31 2-Methoxy-1,4-dihydroxybenzene (4) 的13C-NMR 光譜 (100 MHz, Acetone-d6) ……………………….…………75
圖3-3-32 2-Methoxy-1,4-dihydroxybenzene (4) 的NOESY 光譜 (400 MHz, Acetone-d6)…………………..….……..…….76
圖3-3-33 Dihydroferulic acid (5) 的MASS光譜…………………..79
圖3-3-34 Dihydroferulic acid (5) 的UV光譜………………..…….80
圖3-3-35 Dihydroferulic acid (5) 的IR光譜…………………........80
圖3-3-36 Dihydroferulic acid (5) 的1H-NMR 光譜 (400 MHz, Acetone-d6)……………………………….…………...….81
圖3-3-37 Dihydroferulic acid (5) 的13C-NMR 光譜 (100 MHz, Acetone-d6)…………………………..…………..……….81
圖3-3-38 Dihydroferulic acid (5) 的NOESY 光譜 (400 MHz,
Acetone -d6)…………………………………………..…..82
圖3-3-39 Syringic acid (6) 的MASS光譜…………………………85
圖3-3-40 Syringic acid (6) 的UV光譜…………………...………..85
圖3-3-41 Syringic acid (6) 的IR光譜………………………..…….86
圖3-3-42 Syringic acid (6) 的1H-NMR 光譜 (400 MHz, Acetone-d6)………..……………………………………...86
圖3-3-43 Syringic acid (6) 的13C-NMR 光譜 (100 MHz, Acetone-d6)…………………………………………..…...87
圖3-3-44 Vanillic acid (7) 的MASS光譜……………………….…90
圖3-3-45 Vanillic acid (7) 的UV譜………………..……………....91
圖3-3-46 Vanillic acid (7) 的IR光譜…………………………..…..91
圖3-3-47 Vanillic acid (7) 的1H-NMR 光譜 (400 MHz, Acetone-d6)
……………………..……………………………………..92
圖3-3-48 Vanillic acid (7) 的13C-NMR 光譜 (100 MHz, Acetone-d6)…………………...…………………………..92
圖3-3-49 Vanillic acid (7) 的NOESY 光譜 (400 MHz, Acetone-d6)……………………………………………….93
圖3-3-50 N-Benzoyl-L-phenylalaniol (8) 的MASS光譜……….…97
圖3-3-51 N-Benzoyl-L-phenylalaniol (8) 的UV光譜…………..…98
圖3-3-52 N-Benzoyl-L-phenylalaniol (8) 的IR光譜……..………..98
圖3-3-53 N-Benzoyl-L-phenylalaniol (8) 的1H-NMR 光譜 (400 M
Hz, Pyridine-d5)…………………………....……………..99
圖3-3-54 N-Benzoyl-L-phenylalaniol (8) 的13C-NMR 光譜 (100 M
Hz, Pyridine-d5)………………………………………….99
圖3-3-55 N-Benzoyl-L-phenylalaniol (8) 的COSY 光譜 (400 MHz, Pyridine-d5)……………………………..……………...100
圖3-3-56 N-Benzoyl-L-phenylalaniol (8) 的NOESY 光譜 (400 M
Hz, Pyridine-d5)………………………………..……….100
圖3-3-57 N-Benzoyl-L-phenylalaniol (8) 的HSQC 光譜 (400 MHz, Pyridine-d5)……………………………………………...101
圖3-3-58 N-Benzoyl-L-phenylalaniol (8) 的HMBC 光譜 (400 MHz, Pyridine-d5)……………………………………………...101
圖3-3-59 N-Benzoyl-L-phenylalaniol (8) 的COSY及selected
HMBC Correlations………………………………….….102
圖3-3-60 Aurantiamide (9) 的UV光譜………………………......106
圖3-3-61 Aurantiamide (9) 的IR光譜………………………...….106
圖3-3-62 Aurantiamide (9) 的1H-NMR 光譜 (400 MHz, CDCl3)107
圖3-3-63 Aurantiamide (9) 的13C-NMR 光譜 (100 MHz, CDCl3)….
…………………………………………………………..107
圖3-3-64 Corchoionol C (12) 的UV光譜……………………..….111
圖3-3-65 Corchoionol C (12) 的IR光譜………..……………..….111
圖3-3-66 Corchoionol C (12) 的1H-NMR 光譜 (400 MHz, CD3OD)………………………………..………………..112
圖3-3-67 Corchoionol C (12) 的13C-NMR 光譜 (100 MHz, CD3OD)……………………………..…………………..112
圖3-3-68 Corchoionol C (12) 的COSY 光譜 (400 MHz, CD3OD)…
………………………………………………………..…113
圖3-3-69 Corchoionol C (12) 的HSQC 光譜 (400 MHz, CD3OD)…
…………………………………………………………..113
圖3-3-70 Corchoionol C (12) 的HMBC 光譜 (400 MHz, CD3OD)
……………………………………………………...…...114
圖3-4-1 SAB fractions 對人類嗜中性白血球之細胞性……..…..118
圖3-5-1 4-Quinolone的合成方法…………………………………125







表目錄
表3-1 3-Methoxy-4-hydroxydihydrocinnamic acid methyl ester (1)之
1H、13C-NMR (CDCl3) 圖譜資料………………………...….56
表3-2 Methyl 2-benzamido-3-phenylpropanoate (2)之1H、13C-NMR
(CDCl3) 圖譜資料…………………………………..…..…...64
表3-3 4-Quinolone (3)之1H、13C-NMR (DMSO-d6) 圖譜資料…....72
表3-4 2-Methoxy-1,4-dihydroxybenzene (4)之1H、13C-NMR (Acetone-d6) 圖譜資料………………………………..…...77
表3-5 Dihydroferulic acid (5)之1H、13C-NMR (Acetone-d6) 圖譜資
料…………………...………………………..……….………83
表3-6 Syringic acid (6)之1H、13C-NMR (Acetone-d6) 圖譜資料….88
表3-7 Vanillic acid (7)之1H、13C-NMR (Acetone-d6) 圖譜資料…...94
表3-8 N-Benzoyl-L-phenylalaniol (8)之1H、13C-NMR (Pyridine-d5)
圖譜資料………………………………………….……...…103
表3-9 Aurantiamid (9)之1H、13C-NMR (Acetone-d6) 圖譜資料…108
表3-10 Corchoionol C (12) 之1H、13C-NMR (CD3OD) 圖譜資料115

1. Graham L. Patrick, An Introduction to Medicinal Chemistry, 3/e,
Published in the United States by Oxford University Press Inc., 2005, 171-181.
2. 台灣植物誌,第二版,台灣植物誌編輯委員會出版,1996,342- 381。
3. 黃冠中,台灣水生藥用植物圖鑑,行政院衛生署中醫藥委員會出
版,2009,30。
4. 新編中藥大辭典,新文豐出版公司,1984,5111-5112,5302-5303。
5. 吳雪月,台灣新野菜主義,天下文化出版,2006,182-183。
6. Morita H.; Shishido A.; Kayashita T.; Shimomura M.; Takeya K.;
Itokawa H. Two novel cyclic peptides, yunnanins A and B from
Stellaria yunnanensis. Chem. Lett. 1994, 23, 2415-2418.
7. Morita H.; Kayashita T.; Takeya K.; Itokawaand H.; Shiro M.
Conformation of cyclic heptapeptides-solid and solution state
conformation of yunnanin A. Tetrahedron. 1997, 53, 1607-1616.
8. Archana P.; Yogendra N. S.; Arun K. T. Lipid constituents from
Stellaria media. Phytochemistry. 1995, 39, 709-712.
9. Zhao Y. R.; Zhou J.; Wang X. K.; Huang X. L.; Wu H. M.; Zou C.
Cyclopeptides from Stellaria yunnanensis. Phytochemistry. 1995, 40,
1453-1456.
10. Morita H.; Kayashita T.; Shishido A.; Takeya K.; Itokawa H.; Shiro M. Dichotomins A-E, new cyclic peptides from Stellaria dichotoma L. var. lanceolata Bge. Tetrahedron. 1996, 52, 1165-1176.
11. Morita H.; Kayashita T.; Shimomura M.; Takeya K.; Itokawa H. Cyclic peptides from higher plants. 24. yunnanin C, a novel cyclic heptapeptide from Stellaria yunnanensis. J. Nat. Prod. 1996, 59, 280-282.
12. Morita H.; Kayashita T.; Shimomura M.; Takeya K.; Itokawa H. Cyclic peptides from higher plants. part 30. Three novel cyclic peptides, yunnanins D, E and F from Stellaria yunnanensis. Heterocycles. 1996, 43, 1279-1286.
13. Napolitano A.; Rodriquez M.; Bruno I.; Marzocco S.; Autore G.;
Riccio R., Gomez-Paloma L. Synthesis, structural aspects and cytotoxicity of the natural cyclopeptides yunnanins A, C and phakellistatins 1, 10. Tetrahedron. 2003, 59, 10203-10211.
14. Morita H.; Shishido A.; Kayashita T.; Takeya K.; Itokawa H. Cyclic peptides from higher plants. 39. dichotomins F and G, cyclic peptides from Stellaria dichotoma var. lanceolata Bge. J. Nat. Prod. 1997, 60, 404-407.
15. Morita H.; Takeya K.; Itokawa H. Cyclic octapeptides from Stellaria dichotoma var. lanceolata Bge. Phytochemistry. 1997, 45, 841-846.
16. Morita H.; Kayashita T.; Uchida A.; Takeya K.; Itokawa H. Cyclic peptides from higher plants. 33. Delavayins A-C, three new cyclic peptides from Stellaria delavayi. J. Nat. Prod. 1997, 60, 212-215.
17. Zhao Y. R.; Zhou J.; Wang X. K.; Wu H. M.; Huang X. L.; Zou C. Three cyclopetides from Stellaria delavayi. Phytochemistry. 1997, 46, 709-714.
18. Sun B.; Morikawa T.; Matsuda H.; Tewtrakul S.; Wu L. J.; Harima S.; Yoshikawa M. Structures of new beta-carboline-type alkaloids with antiallergic effects from Stellaria dichotoma. J. Nat. Prod. 2004, 67, 1464-1469.
19. Morikawa T.; Sun B.; Matsuda H.; Wu L. J.; Harima S.; Yoshikawa M. Bioactive constituents from Chinese natural medicines. XIV. New glycosides of beta-carboline-type alkaloid, neolignan, and phenylpropanoid from Stellaria dichotoma L. var. lanceolata and their antiallergic activities. Chem. Pharm. Bull. 2004, 52, 1194- 1199.
20. Morita H.; Iizuka T.; Choo C. Y.; Chan K. L.; Itokawa H.; Takeya K. Dichotomins J and K, vasodilator cyclic peptides from Stellaria dichotoma. J. Nat. Prod. 2005, 68, 1686-1688.
21. Vanhaecke M.; Van den Ende W.; Van Laere A.; Herdewijn P.; Lescrinier E. Complete NMR characterization of lychnose from Stellaria media (L.) Vill. Carbohydr. Res. 2006, 341, 2744-2750.
22. Vanhaecke M.; Van den Ende W.; Lescrinier E.; Dyubankova N. Isolation and characterization of a pentasaccharide from Stellaria media. J. Nat. Prod. 2008, 71, 1833-1836.
23. Chen Y. F.; Kuo P. C.; Chan H. H.; Kuo I. J.; Lin F. W.; Su C. R.; Yang M. L.; Wu T. S.; Li D. T. β-Carboline alkaloids from Stellaria dichotoma var. lanceolata and their anti-inflammatory activity. J. Nat. Prod. 2010, 73, 1993-1998.
24. Vanhaecke M.; Dyubankova N.; Lescrinier E.; Van den Ende W. Metabolism of galactosyl-oligosaccharides in Stellaria media - discovery of stellariose synthase, a novel type of galactosyl- transferase. Phytochemistry. 2010, 71, 1095-1103.
25. Cao L. H.; Zhang W.; Luo J. G.; Kong L. Y. Five new β-carboline-type alkaloids from Stellaria dichotoma var. lanceolata. Helvetica Chimica Acta. 2012, 95, 1018-1025.
26. Yang S. C.; Chung P. J.; Ho C. M.; Kuo C. Y.; Hung M. F.; Huang Y. T.; Chang W. Y.; Chang Y. W.; Chan K. H.; Hwang T. L. Propofol inhibits superoxide production, elastase release, and chemotaxis in formyl peptide–activated human neutrophils by blocking formyl peptide receptor 1. J. Immunol. 2013, 190, 6511-6519.
27. Hwang T. L.; Li G. L.; Lan Y. H.; Chia Y. C.; Hsieh P. W.; Wu Y. H.; Wu Y. C. Potent inhibition of superoxide anion production in activated human neutrophils by isopedicin, a bioactive component of the Chinese medicinal herb Fissistigma oldhamii. Free Radical Bio. Med. 2009, 46, 520-528.
28. Hwang T. L.; Wang C. C.; Kuo Y. H.; Huang H. C.; Wu Y. C.; Kuo L. M.; Wu, Y. H. The hederagenin saponin SMG-1 is a natural FMLP receptor inhibitor that suppresses human neutrophil activation. Biochem. Pharmacol. 2010, 80, 1190-1200.
29. Hsieh P. W.; Yu H. P.; Chang Y. J.; Hwang T. L. Synthesis and evaluation of benzoxazinone derivatives on activity of human neutrophil elastase and on hemorrhagic shock-induced lung injury in rats. Eur. J. Med. Chem. 2010, 45, 3111-3115.
30. Scott A. S.; Ferenc K. Explorations into neolignan biosynthesis: concise total syntheses of helicterin B, helisorin, and helisterculin A from a common intermediate. J. Am. Chem. Soc. 2009, 131, 1745-1752.
31. Thalhammer A.; Mecinovic´ J.; Schofield C. J. Triflic anhydride-mediated synthesis of oxazoles. Tetrahedron Lett. 2009, 50, 1045-1047.
32. Huang J.; Chen Y.; King A. O.; Dilmeghani M.; Larsen R. D.; Faul M. M. A Mild, One-Pot synthesis of 4-quinolones via sequential Pd-catalyzed amidation and base-promoted cyclization. J. Am. Chem. Soc. 2008, 10, 2609-2612.
33. Chen S.; Hossain S. M.; Foss Jr. W. F. Organocatalytic dakin oxidation by nucleophilic flavin catalysts. Org. Lett. 2012, 14, 2806-2809.
34. Takahashi T.; Miyazawa M. Tyrosinase inhibitory activities of cinnamic acid analogues. Pharmazie. 2010, 65, 913-918.
35. Liu J. X.; Di D. L.; Wei X. N.; Han Y. Cytotoxic diarylheptanoids from the pericarps of Walnuts (Juglans regia). Planta Med. 2008, 74, 754-759.
36. Yang Y.; Jiang J.; Qimei L.; Yan X.; Zhao J.; Yuan H.; Qin Z.; Wang M. The fungicidal terpenoids and essential oil from Litsea cubeba in Tibet. Molecules. 2010, 15, 7075-7082.
37. Zhou P.; Natale N. R. Lanthanide catalyzed synthesis of p-hydroxyl amides. Synthetic Communications. 1998, 28, 3317-3330.
38. Xu B.; Huang Z.; Liu C.; Cai Z.; Pan W.; Cao P.; Hao X.; Liang G. Synthesis and anti-hepatitis B virus activities of Matijing-Su derivatives. Bioorg. &; Med. Chem. 2009, 17, 3118 -3125.
39. Yoshikawa M.; Shimada H.; Saka M.; Yoshizumi S.; Yamahara J.; Matsuda H. Medicinal foodstuffs. V. moroheiya. (1): absolute stereostructure of corchoionosides A, B, and C, histamine release inhibitors form the leaves of Vietnamese Corchorus olitorious L. (Tiliaceae). Chem. Pharm. Bull. 1997, 45, 464-469.
40. Hwang T. L.; Su Y.C.; Chang H. L.; Leu Y. L.; Chung P. J.; Kuo L. M.; Chang Y. J. Suppression of superoxide anion and elastase release by C18 unsaturated fatty acids in human neutrophils. J. Lipid Res. 2009, 50, 1395-1408.
41. John J. B.; Jong H. K.; Bruce C. C.; Chou. S. C. Fungicidal activities of dihydroferulic acid alkyl ester analogues. J. Nat. Prod. 2007, 70, 779 -782.
42. Balunas J. M.; Su B.; Riswan S.; Fong H. H.; Brueggemeier R. W.; Pezzuto M. J.; Kinghorn A. D. Isolation and characterization of aromatase inhibitors from Brassaiopsis glomerulata (Araliaceae). Phytochemistry Letters. 2009, 2, 29-33.
43. Osawa T.; Kubo K.; Murooka H.; Nakajima T. Process for producing quinolone derivatives, Kirin Beer Kabushiki Kaisha, 2001, US6187926 B1.
44. Huang L. J.; Hsieh M. C.; Teng C. M.; Lee K. H.; Kuo S. C. Synthesis and antiplatelet activity of phenyl quinolones. Bio. Med. Chem. 1998, 6, 1657-1662.
45. Chang Y. H.; Hsu M. H.; Wang S. H.; Huang L. J.; Qian K.; Morris S. L.; Hamel E.; Kuo S. C.; Lee K. H. Design and synthesis of 2-(3-Benzo[b]thienyl)-6,7-methylenedioxyquinolin-4-one analogues as potent antitumor agents that inhibit tubulin assembly. J. Med. Chem. 2009, 52, 4883-4891.
46. Barbieriková Z.; Maros B.; Lietava J.; Dvoranová D.; Stasko A.; Füzik T.; Milata V.; Jantová S.; Brezová V. Spectroscopic characterization and photoinduced processes of 4-oxoquinoline derivatives. J. Photochem. Photobiol. 2011, 224 , 123-134.
47. Tao G.; Irie Y.; Li D. J.; Keung W. M. Eugenol and its structural analogs inhibit monoamine oxidase A and exhibit antidepressant-like activity. Bioorg. Med. Chem. 2005, 13, 4777-4788.
48. Kato A.; Higuchi Y.; Goto H.; Kizu H.; Okamoto T.; Asano N.; Hollinshead J.; Nash J. R.; Adachi I. Inhibitory effects of zingiber officinale roscoe derived components on aldose reductase activity in vitro and in vivo. J. Agric. Food Chem. 2006, 54, 6640-6644.
49. Goto H.; Terao Y.; Akai S. Synthesis of various kinds of isoflavones, isoflavanes, and biphenyl-ketones and their 1,1-diphenyl-2-picryl -hydrazyl radical-scavenging activities. Chem. Pharm. Bull. 2009, 57, 346-360.
50. Melliou E.; Chinou I. Chemistry and bioactivity of royal jelly from greece. J. Agric. Food Chem. 2005, 53, 8987-8992.
51. Takahashi T.; Miyazawa M. Tyrosinase inhibitory activities of cinna -mic acid analogues. Pharmazie. 2010, 65, 913-918.
52. Owen R. W.; Mier W.; Giacosa A.; Hull W. E.; Spiegelhalder B.; Bartsch H. Phenolic compounds and squalene in olive oils: the concentration and antioxidant potential of total phenols, simple phenols, secoiridoids, lignans and squalene. Food Chem. Toxi. 2000, 38, 647-659.
53. Van den Worm E.; Beukelman C. J.; Van den Berg A. J. J.; Kroes B. H.; Labadie R. P.; Van Dijk H. Effects of methoxylation of apocynin and analogs on the inhibition of reactive oxygen species production by stimulated human neutrophils. Eur. J. Pharm. 2001, 433, 225- 230.
54. Chen I.S.; Chen H. F.; Cheng M. J.; Chang Y. L.; Teng C. M.; Tsutomu I.; Chen J.J.; Tsai I. L. Quinoline alkaloids and other constituents of melicope semecarpifolia with antiplatelet aggregation activity. J. Nat. Prod. 2001, 64, 1143-1147.
55. Huang D. W.; Kuo Y. H.; Lin F. Y.; Lin Y. L.; Chiang W. Effect of adlay (coix lachryma-jobi L. var. ma-yuen stapf) testa and its phenolic components on Cu 2 +-treated low-density lipoprotein (LDL) oxidation and lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophages. J. Agric. Food Chem. 2009, 57, 2259-2266.
56. Khallouki F.; Haubner R.; Erben G.; Ulrich M.C.; Owen W. R.
Phytochemical composition and antioxidant capacity of various botanical partsof the fruits of Prunus domestica L. from the Lorraine region of Europe. Food Chem. 2012, 133, 697-706.
57. Chen J. J.; Lin R. W.; Duh C. Y., Huang H.Y.; Chen I. S. Flavones and cytotoxic constituents from the stem bark of Muntingia calabura. J. Chinese Chem. Soc. 2004, 51, 665-670.
58. Lirdprapamongkol K.; Kramb J. P.; Suthiphongchai T.; Surarit R.; Srisomsap C.; Dannhardt G.; Svasiti J. Vanillin suppresses metastatic potential of human cancer cells through PI3K inhibition and decreases angiogenesis in vivo. J. Agric. Food Chem. 2009, 57, 3055-3063.
59. Hugo P. C.; Joana G. C.; Rogerio R.; Mundo S.; Namiesnik J.; Gorinstein S.; Gustavo A.; Aguilar G. Antioxidant interactions between major phenolic compounds found in ‘Ataulfo’ mango pulp: chlorogenic, gallic, protocatechuic and vanillic acids. Molecules. 2012, 17, 12657-12664.
60. Tsai P. L.; Wang J. P.; Chang C. W.; Kuo S. C.; Chao P. L. Constituents and bioavtive principles of polugonum chinensis. Phytochemistry. 1998, 49, 1663-1666.
61. Xu B.; Huang Z.; Liu C.; Cai Z.; Pan W.; Cao P.; Hao X.; Liang G. Synthesis and anti-hepatitis B virus activities of Matijing-Su derivatives. Bioorg. Med. Chem. 2009, 17, 3118-3125.
62. Yen C.T.; Hwang T. L.; Wu Y. C.; Hsieh P. W. Design and synthesis of new N-(fluorenyl-9-methoxycarbonyl)(Fmoc)-dipeptides as anti-in -flammatory agent. Euro. J. Med. Chem. 2009, 44, 1933-1940.
63. Pan M. H.; Lai C. S.; Wang Y. J.; Ho C. T. Acacetin suppressed LPS-induced up-expression of iNOS and COX-2 in murine macro -phages and TPA-induced tumor promotion in mice. Biochem. pharm. 2006, 72, 1293-1303.
64. Pichette A.; Eftekhari A.; Georges P.; Lavoie S.; Mshvildadze V.; Legault J. Cytotoxic phenolic compounds in leaf buds of Populus tremuloides. Can. J. Chem. 2010, 88, 104-110.
65. Wu Q.; Yu C.; Yan Y.; Chen J.; Zhang C.; Wen X. Antiviral flavonoids from Mosla scabra. Fitoterapia. 2010, 81, 429-433.
66. Fan S. Y.; Zeng H. W.; Pei Y. H.; Li L.; Ye J.; Pan Y. X.; Zhang J. G.; Yuan X.; Z;ang W. D. The anti-inflammatory activities of an extract and compounds isolated from Platycladus orientalis (Linnaeus) franco in vitro and ex vivo. J. Ethnopharmacol. 2012, 141, 647-652.
67. Jalil J.; Jantan I.; Ghani A. A.; Murad S. Platelet-activating factor (PAF) antagonistic activity of a new biflavonoid from Garcinia nervosa var. pubescens King. Molecules. 2012, 17, 10893-10901.
68. Jing P.; Zhao S. J.; Jian W. J.; Qian B. J.; Dong Y.; Pang J. Quantitative studies on structure-DPPH• scavenging activity relationships of food phenolic acids. Molecules. 2012, 17, 12910-12924.
69. Trung N.; Khoa M. H.; Xuan H.; Bui N. K.; Thi M. T. Tyrosinase inhibitors from the wood of Artocarpus heterophyllus. J. Nat. Prod. 2012, 75, 1951-1955.
70. Ren Y.; Shen L.; Zhang D. W.; Dai S. J. Two new sesquiterpenoids from Solanum lyratum with cytotoxic activities. Chem. Pharm. Bull. 2009, 57, 408-410.
71. Dat N. T.; Jin X.; Hong Y. S.; Lee J. J. An isoaurone and other constituents from Trichosanthes kirilowii seeds inhibit hypoxia -inducible factor-1 and nuclear factor- κB. J. Nat. Prod. 2010, 73, 1167-1169.
72. Qina J. J.; Jina H.Z.; Zhua J. X.; Fua J. J.; Zenga Q.; Chenga X. R.; Zhua Y.; Shanb L.; Zhanga S. D.; Panb Y. X.; Zhang W. D. New sesquiterpenes from Inula japonica Thunb. with their inhibitory activities against LPS-induced NO production in RAW264.7 macrophages. Tetrahedron. 2010, 66, 9379-9388.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top