跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/21 01:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李欣哲
研究生(外文):Hsin-Che, Lee
論文名稱:有機太陽能電池與氧化鋅奈米柱之研究
論文名稱(外文):Organic Solar Cells Based on ZnO Nanorods and Conjugated Polymer
指導教授:林坤成林坤成引用關係林清富林清富引用關係
指導教授(外文):Kuen-Cherng, LinChing-Fuh, Lin
口試委員:莊為群林晏瑞林坤成
口試委員(外文):Wei-Chun, ChuangYen-Juei, LinKuen-Cherng, Lin
口試日期:2013-07-01
學位類別:碩士
校院名稱:中華科技大學
系所名稱:機電光工程研究所碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:65
中文關鍵詞:有機太陽能電池氧化鋅奈米柱倒置結構
外文關鍵詞:Solar CellsZnO NanorodInverted Structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著世界能源的消耗,尋找替代性能源越來越重要。光伏科技-可將太陽光能直接轉換為電能,被視為是在未來極有可能取代石油成為全球能源來源之一。由共軛高分子與富勒烯衍生物所組成的太陽能電池近年來吸引了各界的注意,它實現了可印刷、可撓曲及低成本的優勢,但在此種太陽能電池中,其吸光層的奈米形貌具有不容易精準地的控制,影響了吸光層中載子的傳輸;不僅如此在高分子太陽能電池中有機層與電極介面、有機材料與無機材料介面載子傳輸的控制亦是相當具有相當難度的工作。此外,電極介面的性質對於高分子太陽能電池的穩定性具直接的影響。
在本篇論文中主要是為了實現低成本與高效率的倒置結構氧化鋅奈米柱與高分子混成太陽能電池,藉由製程上的最佳化與溶液製程的中介層提升元件效率。由於我們研究顯示在緩慢乾燥法提升高分子層的結晶性;其中,增加塗佈靜置時間的緩慢乾燥法可改善元件轉換效率從4.21%至5.53%,因為它能同時使高分子層膜厚增加與結晶性提升;隨著高分子層從液態轉變為固態的時間增長,高分子擁有足夠的時間滲透進入奈米柱間,亦結合了氧化鋅奈米柱的優勢,因此在慢乾的元件中,卻不會犧牲載子的傳輸;並且隨著膜厚的增加,提升入射光的吸收,增加元件中的光電流,因此元件轉換效率大幅提升至5.53%。另ㄧ方面,為了達到簡單製程與低成本的太陽能電池,我們使用了一系列溶液製程的中介層,其中藉由加入三氧化鉬中介層,使得中介層能夠阻擋電子並不犧牲串聯電阻,有效抑制元件的漏電流進而提升太陽能電池的效率至5.53 %。

As energy consumption and more important to find alternative energy sources, photovoltaic technology (direct conversion of solar energy into electrical energy) has been identified as one of the promising technologies. Solar cells based on blends of conjugated polymers and fullerene derivatives have recently attracted significant attention due to their great promise for the realization of printable, flexible, and low-cost renewable energy sources. However, it is not easy to precisely control the nanoscale morphology of photoactive layer which seriously affects the carrier transport. In addition, control of the charge transport at organic-electrode or
Organic-inorganic interface is also challenging in polymer-based solar cells.
Quality of the electrode interface is also critical for the polymer solar cells stability.
The aim is to achieve low cost and high efficiency inverted structure ZnO nanorods with polymer hybrid solar cells, with manufacturing process optimization and solution processes intermediary layer to enhance device efficiency.. We use the slow-drying method to enhance the crystallinity of the polymer layer; wherein the coating increases standing time of the slow drying method can improve the conversion efficiency increased from 4.21 to 5.53%As the polymer solidification time is lengthened by lowering the spin-coating rate of the photoactive layer, the photoactive layer becomes thickened, and the polymer chains have enough time to self-organize and effectively infiltrate into ZnO nanorod spacing.

目錄
致謝…………………………………………………………………………………....i
摘要…………………………………………………………………………………...ii
Abstract……………………………………………………………………………...iii
目錄………………………………………………………………………………….iv
圖目錄.......................................................................................................................viii
表目錄..........................................................................................................................xii

第一章 緒論……………………………………………………...…..1
1.1 研究背景………………………………………………………………….1
1.1.1太陽能電池之發展………………………………………………….1
1.1.2 有機太陽能電池之發展……………………………………………3
1.2 文獻導覽…………………………………………………………………...4
1.2.1 高分子太陽能電池…………………………………………………4
1.2.2 倒置(inverted)結構高分子太陽能電池……………………………7
1.2.3 倒置結構氧化鋅奈米柱與高分子太陽能電池…………….10
1.3 研究動機………………………………………………………………….12

第二章 實驗理論………………………………..……………….....13
2.1 太陽能電池基本理論…………………………………………………….13
2.1.1 太陽能電池工作原理與等效電路………………………………..13
2.1.2 太陽能電池基本參數……………………………………………..16
2.1.3 共軛高分子太陽能電池工作原理 ……………………………..18
2.2 共軛高分子的簡介……………………………………………………….22
2.3 共軛高分子太陽能電池之結構演進…………………………………….24
2.4 氧化鋅奈米柱陣列特性與合成………………………………………….26

第三章 倒置結構氧化鋅/高分子混成太陽電池的實驗流程……...28
3.1 元件結構與使用材料 …………………………………………………...28
3.2 元件製備流程…………………………………………………………….32
3.2.1 ITO 蝕刻與清洗…………………………………………………...32
3.2.2 氧化鋅奈米柱製備流程…………………………………………..32
3.2.3 主動層成膜………………………………………………………..33
3.2.4 MoO3電洞傳輸層與銀正電極蒸鍍………………………………34
3.3 元件效率量測方法……………………………………………………….34

第四章 透過製程方法改善倒置結構太陽能電池的元件效率…… 35
4.1 實驗步驟………………………………….………………………………35
4.1.1 ITO 蝕刻與清洗………………………………………………35
4.1.2 氧化鋅種子層製備………………….………………………35
4.1.3 主動層成膜……………………………………………………36
4.1.4 MoO3電洞傳輸層與銀正電極蒸鍍………….………………36
4.1.5 元件效率量測…………………………………….……………37
4.2 結果與討論………………………………………………………………37
4.2.1 增加塗佈靜置時間………………………………………………37
4.2.2 改變乾燥時間……………………………………………………38
4.3 結論……………………………………………………………………….39

第五章 加入氧化鋅奈米柱之研究………………………………...65
5.1 實驗動機………………………………………………………40
5.2 實驗步驟………………………………………………………40
5.2.1 ITO 蝕刻與清洗………………………………………40
5.2.2 氧化鋅奈米柱製備流程…………………………………41
5.2.3 主動層成膜……………………………………………42
5.2.4 MoO3電洞傳輸層與銀正電極蒸鍍………………………42
5.2.5 元件效率量測方法………………………………………43
5.3 結果與討論……………………………………………………43
5.4 結論……………………………………………………………45
第六章 總結與未來展望…………………………………………...46
6.1 結論……………………………………………………………………….46
6.2 建議與未來展望... ……..………………………………………………..46
參考文獻…………...……………………………………………………………….48
著作目錄……………………………………………………………………………57

參考文獻
[1]蔡進譯, "超高效率太陽電池-從愛因斯坦的光電效應談起", 物理雙月刊 27, 2005.
[2]D. M. Chapin, C. S. Fuller, G. L. Pearson, "A New Silicon P-N Junction Photocell for Converting Solar Radiation into Electrical Power", Journal of Applied Physics 25, 1954, 676-677.
[3]張正華,李陵嵐,葉楚平,楊平華,馬振基, 有機與塑膠太陽能電池, 五南圖書出版公司, Taipei, 2007.
[4]V. D. Mihailetchi, H. X. Xie, B. de Boer, L. M. Popescu, J. C. Hummelen, P. W. M. Blom, L. J. A. Koster, "Origin of the enhanced performance in poly(3-hexylthiophene): [6,6]-phenyl C-61-butyric acid methyl ester solar cells upon slow drying of the active layer", Applied Physics Letters 89, 2006, 012107.
[5]G. Conibeer, "Third-generation photovoltaics", Materials Today 10, 2007, 42-50.
[6]H. Hoppe, N. S. Sariciftci, "Organic solar cells: An overview", Journal of Materials Research 19, 2004, 1924-1945.
[7]C. J. Brabec, J. R. Durrant, "Solution-processed organic solar cells", MRS Bull. 33, 2008, 670-675.
[8]A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, M. D. McGehee, "Polymer-based solar cells", Materials Today 10, 2007, 28-33.
[9]K. M. Coakley, M. D. McGehee, "Conjugated polymer photovoltaic cells", Chemistry of Materials 16, 2004, 4533-4542.
[10]F. Padinger, R. S. Rittberger, N. S. Sariciftci, "Effects of Postproduction Treatment on Plastic Solar Cells", Advanced Functional Materials 13, 2003, 85-88.
[11]X. N. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, R. A. J. Janssen, "Nanoscale morphology of high-performance polymer solar cells", Nano Lett. 5, 2005, 579-583.
[12]W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, "Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology", Advanced Functional Materials 15, 2005, 1617-1622.
[13]G. Li, V. Shrotriya, Y. Yao, Y. Yang, "Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly (3-hexylthiophene)", J. Appl. Phys 98, 2005, 043704.
[14]C. J. Ko, Y. K. Lin, F. C. Chen, "Microwave annealing of polymer photovoltaic devices", Advanced Materials 19, 2007, 3520-3523.
[15]G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, "High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends", Nat. Mater. 4, 2005, 864-868.
[16]S. A. Amautov, E. M. Nechvolodova, A. A. Bakulin, S. G. Elizarov, A. Khodarev, D. S. Martyanov, D. Y. Paraschuk, "Properties of MEH-PPV films prepared by slow solvent evaporation", Synth. Met. 147, 2004, 287-291.
[17]M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, J. Nelson, "Morphology evolution via self-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends", Nat. Mater. 7, 2008, 158-164.
[18]D. C. Olson, Y. J. Lee, M. S. White, N. Kopidakis, S. E. Shaheen, D. S. Ginley, J. A. Voigt, J. W. P. Hsu, "Effect of polymer processing on the performance of poly(3-hexylthiophene)/ZnO nanorod photovoltaic devices", Journal of Physical Chemistry C 111, 2007, 16640-16645.
[19]F. C. Chen, H. C. Tseng, C. J. Ko, "Solvent mixtures for improving device efficiency of polymer photovoltaic devices", Applied Physics Letters 92, 2008, 103316.
[20]G. Li, C. W. Chu, V. Shrotriya, J. Huang, Y. Yang, "Efficient inverted polymer solar cells", Applied Physics Letters 88, 2006, 253503.
[21]H.-H. Liao, L.-M. Chen, Z. Xu, G. Li, Y. Yang, "Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer", Applied Physics Letters 92, 2008, 173303.
[22]M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, D. S. Ginley, "Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer." Applied Physics Letters 89, 2006, 143517.
[23]C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, C. J. Brabec, "Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact", Applied Physics Letters 89, 2006, 233517.
[24]S. K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O'Malley, A. K. Y. Jen, "Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer", Applied Physics Letters 92, 2008, 253301.
[25]S. K. Hau, H. L. Yip, H. Ma, A. K. Y. Jen, "High performance ambient processed inverted polymer solar cells through interfacial modification with a fullerene self-assembled monolayer", Applied Physics Letters 93, 2008,
[26]W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, "Hybrid nanorod-polymer solar cells", Science 295, 2002, 2425-2427.
[27]D. C. Olson, S. E. Shaheen, R. T. Collins, D. S. Ginley, "The effect of atmosphere and ZnO morphology on the performance of hybrid poly(3-hexylthiophene)/ZnO nanofiber photovoltaic devices", Journal of Physical Chemistry C 111, 2007, 16670-16678.
[28]K. Takanezawa, K. Hirota, Q. S. Wei, K. Tajima, K. Hashimoto, "Efficient charge collection with ZnO nanorod array in hybrid photovoltaic devices", Journal of Physical Chemistry C 111, 2007, 7218-7223.
[29]K. Takanezawa, K. Tajima, K. Hashimoto, "Efficiency enhancement of polymer photovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadium oxide buffer layer", Applied Physics Letters 93, 2008, 063308.
[30]J. B. Baxter, C. A. Schmuttenmaer, "Conductivity of ZnO Nanowires, Nanoparticles, and Thin Films Using Time-Resolved Terahertz Spectroscopy", Journal of Physical Chemistry B 110, 2006, 25229-25239.
[31]Y.-J. Lee, T. L. Sounart, D. A. Scrymgeour, J. A. Voigt, J. W. P. Hsu, "Control of ZnO nanorod array alignment synthesized via seeded solution growth", Journal of Crystal Growth 304, 2007, 80-85.
[32]J. C. Bernede, "Organic photovoltaic cells: History, principle and techniques", Journal of the Chilean Chemical Society 53, 2008, 1549-1564.
[33]B. C. Thompson, J. M. J. Frechet, "Organic photovoltaics - Polymer-fullerene composite solar cells", Angewandte Chemie-International Edition 47, 2008, 58-77.
[34]L. J. A. Koster, D. E. Markov, "Device Physics of Polymer: Fullerene Bulk Heterojunction Solar Cells*", Advanced Materials 19, 2007, 1551-1566.
[35]L. J. A. Koster, V. D. Mihailetchi, P. W. M. Blom, "Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells." Applied Physics Letters 88, 2006, 093511.
[36]A. Moliton, J. M. Nunzi, "How to model the behaviour of organic photovoltaic cells," in Conference on Devices and Electronics of Organics (DIELOR), Limoges, FRANCE, 2006, 583-600.
[37]陳壽安, "導電高分子:新世代光電材料", 物理雙月刊 23, 2001.
[38]C. W. Tang, "Two-layer organic photovoltaic cell", Applied Physics Letters 48, 1986, 183-185.
[39]J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. L. Ma, X. Gong, A. J. Heeger, "New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer", Adv. Mater. 18, 2006, 572.
[40]Z. Xu, L. M. Chen, G. W. Yang, C. H. Huang, J. H. Hou, Y. Wu, G. Li, C. S. Hsu, Y. Yang, "Vertical Phase Separation in Poly(3-hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells", Advanced Functional Materials 19, 2009, 1227-1234.
[41]http://en.wikipedia.org/wiki/Zinc_oxide.
[42]Z. W. Pan, Z. R. Dai, Z. L. Wang, "Nanobelts of semiconducting oxides", Science 291, 2001, 1947-1949.
[43]Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren, P. H. Fleming, "Site-specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy", Applied Physics Letters 81, 2002, 3046-3048.
[44]Q. C. Li, V. Kumar, Y. Li, H. T. Zhang, T. J. Marks, R. P. H. Chang, "Fabrication of ZnO nanorods and nanotubes in aqueous solutions", Chemistry of Materials 17, 2005, 1001-1006.
[45]M. Guo, P. Diao, X. D. Wang, S. M. Cai, "The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films", Journal of Solid State Chemistry 178, 2005, 3210-3215.
[46]L. Vayssieres, K. Keis, S. E. Lindquist, A. Hagfeldt, "Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO", Journal of Physical Chemistry B 105, 2001, 3350-3352.
[47]K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, E. S. Aydil, "Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices", Nano Letters 7, 2007, 1793-1798.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top