( 您好!臺灣時間:2024/05/30 02:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Ping-Hui Yang
論文名稱(外文):Real-Time Calculation of Physical Activity by using Mobile Device.
指導教授(外文):Rong-Tai Hong
口試委員(外文):Wen-Hsu SungChih-Chung Ni
外文關鍵詞:Energy expenditure、Mobile Devices、Android、Three-Axis Accelerometer
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
目前,全球行動裝置的使用者已高達80%,其中智慧型手機又占大多數比例,幾乎已達人手一機的狀態,所以智慧型手機儼然已成為人們生活中,不可或缺的一項電子產品。近幾年來,Android行動系統作業平台快速竄起,因其具有開放性、免費性、支援性高…等多重優點,所以它的市占率已超過熱門的iOS作業系統。本文是利用智慧型手機中的三軸加速計(Tri-axis Accelerometer)功能,搭配自行編寫的Android Application(APP)應用程式。來量測人體在走路、跑步時所產生的消耗量。透過熱量消耗公式計算,來了解本身的運動量是否足夠,以達到健康促進之目的。
Today, more than 80 percent of global population owns mobile device users, and smart phone, the most representative mobile device, is particularly ubiquitous in our daily life. Google Android OS and its applications have dominated the smart phone industry owning to its high openness, free royalty and high supportability. In this work, an Android application is developed to calculate user energy expenditure by leveraging the prevalence and functionality of smart phone which utilizes the tri-axis accelerometer (TA). Such application can help to improve health via reminding users of appropriate amount of exercise.
The result is more accurate as TA sensor locating on waist, rather than those on foot and chest. The components of acceleration of TA are changed as the axial of TA are not consistent with the movement directions and it is relatively stable as the TA located on waist while measuring. Compared with other commercialized devices specialized for energy expenditure calculation, this application on smart phone has accuracy close to 73%. Another finding is the insignificance of measurement data under different sampling frequency, which suggests adopting normal detection frequency for walking movement for saving the electrical power of smart phone.
誌謝 i
摘要 ii
目錄 iv
表目錄 vi
圖目錄 vii
第一章、 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 2
1-3 文獻回顧 3
1-3-1 微機電系統 3
1-3-2 加速感測器的技術應用 3
1-3-3 身體活動量偵測 6
1-3-4 身體活動與能量消耗之研究 7
1-4 論文架構 9
第二章、 實驗設備 10
2-1 硬體介紹 10
2-1-1 手機規格 10
2-1-2 電腦規格 13
2-2 軟體介紹 13
2-2-1 Android 13
2-2-2 Eclipse 14
2-2-3 Java 16
2-2-4 感應器取樣頻率 16
第三章、 實驗模型 18
3-1 理論公式 18
3-2 系統架構 19
3-3 加速度感應器模型 20
3-4 感測器配掛位置 22
3-5 其他熱量消耗計算方式 22
3-6 實驗步驟 23
第四章、 結果與討論 24
4-1 感測器擺放位置與運動消耗量 24
4-2 比較三種模式的運動消耗量 27
4-2-1 走路運動消耗量 27
4-2-2 跑步運動消耗量 29
第五章、 結論與建議 33
參考文獻 34
附錄 37

[1]手機王 「2010 年智慧型手機市場回顧」
[2]”International Data Corporation” , http://www.idc.com/home.jsp (last accessed Jun 06, 2012)
[3]Gartner (2012),「2011手機銷售量統計」。取自http://www.gartner.com/technology/home.jsp
[4]科技新報 TechNews 「智慧型手機堑2013邁向成長期」
[7]羅智勇、張耀川、鄭炎坤 (2005),「淺談運動與健康•興國學報」,253-257。
[9]Harvey Weinberg新電子,「加速度計搭配陀螺儀 MEMS應用如虎添翼」,2009年10月號104期http://www.2cm.com.tw/zoomin_content.asp?sn=0910050011
[10]J. Kela, P.Korpipaa, Mantyjarvi, S.Kallio, G.Savino, L.Jozzo and S. D. Marca, Accelerometer-Based Gesture Control For A Design Environment, Personal and Ubiquitous Computing, 10,no. 5, 2006, pp. 285-299. (2006)
[11]C.Tacconi, S.Mellone and L. Chiari, Smartphone-based Applications for Investigating Falls and Mobility,In Proc. Of the 5th Int. conf. on Pervasive Computing Technologies for Healthcare, 2011, pp.258-261
[12]施建仲, 「使用線性加速感測晶片的計步器」,碩士論文,國立中央大學,2000。
[13]A. Akl and S. Valaee, “Accelerometer-Based Gesture Recognition Via Dynamic-Time Warping,Affinity Propagation,&Compressive Sensing”, In Proc. of the 35th IEEE Int. Con.on Acoustics Speech and Signal Processing, 2012, pp.2270-2273
[14]Bouten Carlijn V.C., Koekkoek Karel T.M., Verduin Maarten, Kodde Rens, and Jannsen Jan D. (1997) ”A Triaxial Accelerometer and Portable Data Processing Unit for the Assessment of Daily Physical Activity”
IEEE Transactions On Biomedical Engineering Vol. 44, No. 3, March
[15]S. B. Servais, B. Webster and G. John, “Estimating Human Energy Expenditure Using An Accelerometer Device”, Journal of Clinical Engineering / April – June. P82. (1984)
[16]R. E. LaPorte and H.J. Montoye, “Assessment of physical activity in epidemiologic research:problems and prospects.” , Public Health Reports 100 (2) p131 (1985).
[17]K. R. Westerterp, “Assessment of physical activity level in relation to obesity:current evidence and research issues”, Medicine & Science in Sports & Exercise 31 (11) S522 (1999).
[18]S.I. DeVries and H.W.Van Hirtum, “Validity and reproducibility of motion sensors in youth:a systematic update”, Medicine & Science in Sports & Exercise, 41 (4) p818. (2009)
[19]I. Wolinsky and J. Driskell, “Sports nutrition:energy metabolism and exercise”, Boca Raton: CRC Press, p272(2008).
[20]M.M. Koo and T.E. Rohan, “Comparison of four habitual physical activity questionnaires in girls aged 7-15 yr.”, Medicine & Science in Sports & Exercise 31 (3) 421 (1999).
[21]N. Leenders and W.M. Sherman ”Comparisons of four methods of estimating physical activity in adult women.”Medicine & Science in Sports & Exercise 32 (7) 1320. (2000).
[22]Tudor-Locke,C.,B.E.Ainsworth (2002). ”Comparison of pedometer and accelerometer measures of free-living physical activity.”Medicine & Science in Sports & Exercise 34 (12) 2045
[23]R.G. Eston and A.V.Rowlands (1998).”Validity of heart rate,pedometry,and accelerometry for predicting the energy cost of children’s activities.”Journal of applied Physiology 84 (1) 362
[24]S.M. Powell andA.Rowlands (2004). ”Intermonitor variability of the RT3 accelerometer during typical physical activities” Medicine & Science in Sports & Exercise 36 (2) 324
[27]P.S Freedson and E.Melanson “Calibration of the computer science and applications in accelerometer”, Medicine & Science in Sports & Exercise 30 (5) p777. (1998).
[28]K. Corder and U. Ekelund, “Assessment of physical activity in youth”, Journal of applied Physiology 105 (3) p977 (1993).
[29]M.R. Puyau and A.L.Adolph, “Validation and calibration of physical activity monitors in children”, Obesity 10 (3) pp150-157 (2002).
[30]S.G. Trost and D.S.Ward, “Validity of the computer science and applications (CAS) activity monitor in children.” Medicine & Science in Sports & Exercise”, 30 (4) p629 (1998).
[31]Samsung 手機官網

第一頁 上一頁 下一頁 最後一頁 top