莊達人(2000)。「VLSI 製造技術」。台北市:高立圖書有限公司。
葉怡成(2000)。「類神經網路模式應用與實作」。台北市:儒林圖書公司。
林瑞山(2004)。類神經網路於預測晶圓測試良率之應用。未出版之碩士論文,國立成功大學工學院工程管理在職專班,台南市。蕭宏(2002)。「半導體製程技術導論」。台北市:學銘圖書總代理。
陳逸新(2009)。半導體研發設計階段以WAT 參數建構系統化黃金晶方抽樣分析模型。未出版之碩士論文,國立清華大學工業工程與工程管理研究所,新竹市。陳志安(2005)。「應用線性迴歸模型」。台北市:華泰文化事業股份有限公司。
李友錚(2007)。「作業管理」。台北市:前程文化事業股份有限公司。
張家銘(2007)。以 CART 決策樹方法建構晶圓良率值與晶圓允收參數間之關聯性模式。未出版之碩士論文,國立清華大學工業工程與工程管理研究所,新竹市。吳喜成(2011)。40keV硼離子佈植對於氧化鋅薄膜之影響研究。未出版之碩士論文,國立台北科技大學機電整合研究所,台北市。Badiru, A.B. and Sieger, D.B(1998). Neural network as a simulation metamodel in economic analysis of risky projects. European Journal of Operation Research,(105),130-142
Chaveesuk, R. and Smith, A. E(1999). A neural network metamodel approach to capital investment decision analysis. IEEE Neural Networks International Joint
Conference ,(6),3844-3849.
Freeman, J. A. and Skapura, D. M(1992).Neural Networks Algorithms, Applications ,and Programming Techniques. Addison-Wesley Publishing Company.New York.
Stapper, C. H(1985). The effects of wafer to wafer density variations on integrated circuit defect and fault density. IBM Journal of Research development ,(29), 87-97.
Vellido, A., Lisboa, P. J.G. and Vaughan, J( 1999). Neural Networks in Business: A Survey of Applications .Expert Systems with Applications ,(17), 51-70.
Walczak S., Cerpa N( 1999). Heuristic principles for the design of artificial neural networks. Information and Software Technology,(41), 107-117.
Williams, R. J. and Zipser, D(1989) .A learning algorithm for continually running fully recurrent neural networks.Neural Computatiol,(1), 270-280.
Hecht-Nielsen,R(1989). Theory of the backpropagation neural network. International Joint Conference on Neural Networks. Washington, DC.
Utans, J. Moody, J. Rehfuss, S. and Siegelmann, H(1995) .Input variable selection for neural networks application to predicting the U.S. business cycle. Proceedings of the IEEE/IAFE on Computational Intelligence for Financial Engineering. New York.
Zurada, J. M. Malinowski, A. and Cloete, I(1994).Sensitivity analysis for minimization of input data dimension for feedforward neural network. IEEE International Symposium on Circuits and Systems 6. London.
Hashem, S(1992). Sensitivity analysis for feedforward artificial neural networks with differentiable activation functions. Proceedings of the International Joint Conference on Neural Networks. Baltimore, (7),419-424. Baltimore.
Douglas C.Montgomery(2006).Introduction To Linear Regression Analysis.New York:Wiley.
Dagli,C.et al.,1994.Enhancing the Performance of Neural Network Models for the Wire Bonding Process.Intelligent Engireering Systems through Artificial Neural Networks, (4),1041-1047.
Geman, S. Bienenstock, E.and Doursat, R.(1992).Neural Networks and the Bias/Variance Dilemma,Neural Computation, Neural Computation,(4),1-58.
Hush,D.R.and Horne,B.G.(1993).Progress in Supervised Neural Networks:What’s New since Lippmann,IEEE Signal Processing Magazine.8-39.
Lee,Y.H.and Kim,S.(1993).Neural Network Applications for Scheduling Jobs on Parallel Machines,Computers and Industrial Engineering,(25),227-230.
Williams,R.J.and Zipser,D.(1997).A Learning Algorithm for Continually Running Fully Recurrent Neural Networks,Neural Computation,(1),271-279.
Wang,S.(1998).An Insight into the Standard Back-propagation Neural Network Model for Regression Analysis,International Journal of Management Science,(26),133-140.
Vaithyanathan,S.and Ignizio,J.P.(1992).A Stochastic Neural Network for Resource Constrained Scheduling,Computers and Operations Research,(19),241-254.
Montgomery,D.C.(1996).Introduction to Statistical Quality Control.WILEY.New York.
Liu,D.and Dong,J.(1996).Dispatching Rule Selection Using Artificial Neural Networks for Dynamic Planning and Scheduling,Journal of Intelligent Manufacturing,(7),243-250.