跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/22 22:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何于塵
研究生(外文):Yu-Chen Ho
論文名稱:壹、研究乙醯紫堇醇靈鹼對於小鼠樹突細胞成熟的影響貳、建立小鼠原位血栓栓塞中風模型
論文名稱(外文):I. The study of the effect of acetylcorynoline on the maturation of mouse bone marrow-derived dendritic cellsII. Development of mouse model of in situ thromboembolic stroke
指導教授:傅如輝
指導教授(外文):Ru-Huei Fu
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:免疫學研究所碩士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:86
中文關鍵詞:乙醯紫堇醇樹突細胞原位血栓栓塞中風凝血蛋白酶
外文關鍵詞:acetylcorynolinedendritic cellthromboembolic strokethrombin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
壹、研究乙醯紫堇醇靈鹼對於小鼠樹突細胞成熟的影響
樹突細胞是在免疫系統中最主要的調節者,所以目前利用樹突細胞最主要的研究是將樹突細胞作為一個篩選藥物的平台,去尋找可以用來治療發炎以及自體免疫疾病的生物試劑。乙醯紫堇醇靈鹼(Acetylcorynoline)主要是從苦地丁(Corydalis bungeana)萃取出的生物鹼,這個研究主要的目的是要來評估乙醯紫堇醇靈鹼調控經由脂多醣體刺激活化的小鼠骨髓樹突細胞的可能性。
經由實驗數據表示使用高達20μg ml-1劑量的乙醯紫堇醇靈鹼不但不會引起細胞毒性,且會顯著地降低由脂多醣體刺激樹突細胞所分泌的腫瘤壞死因子-α(TNF-α)、間白素-6(IL-6)與間白素-12p70(IL-12p70)。脂多醣體會誘發在樹突細胞表面表現第二型主要組織相容性複合體(major histocompatibility complex class II; MHC Class II)、CD40及CD86造成樹突細胞成熟,進而引發免疫反應,而乙醯紫堇醇靈鹼會抑制第二型主要組織相容性複合體、CD40及CD86的表現量進而調節免疫反應,但是會使經由脂多醣體刺激的樹突細胞恢復內吞作用的能力。此外,乙醯紫堇醇靈鹼會去抑制經由脂多醣體刺激樹突細胞引起的異體T細胞增生,也會去降低脂多醣體刺激樹突細胞的移行能力,還可以顯著地抑制經由脂多醣體誘發的IKK(IκB kinase)與MAPKs(Mitogen-Activated Protein Kinase) 。更重要的是經由2,4-dinitro-1-fluorobenzene誘發小鼠的延遲性致敏反應給予乙醯紫堇醇靈鹼有顯著的抑制。
乙醯紫堇醇靈鹼也許是一種有效去通過抑制樹突細胞成熟與其功能的免疫抑制劑。

貳、建立小鼠原位血栓栓塞中風模型
腦中風是目前全世界十大死因的疾病之一,當提供腦部營養的血管阻塞或破裂就可以稱為腦中風 (cerebrovascular accident; stroke)。有鑑於目前傳統上的中風模型大都是評估神經保護行為上恢復的能力,所以想建立可以用來評估血栓阻塞的中風模型。利用了顱骨開創術將小鼠右頭骨開創找出中大腦動脈 (Middle cerebral artery; MCA),將凝血蛋白酶 (Thrombin)利用顯微注射的方式打入MCA,使中大腦動脈凝血形成栓塞造成中風,接著利用尾靜脈注射給予中草藥植化物去評估其抗血栓之效用及神經學上行為恢復之情形。

I. The study of the effect of acetylcorynoline on the maturation of mouse bone marrow-derived dendritic cells
Dendritic cells (DCs) are major modulators in the immune system. One active field of research is the manipulation of DCs as pharmacological targets to screen novel biological modifiers for the treatment of inflammatory and autoimmune disorders. Acetylcorynoline is the major alkaloid component derived from Corydalis bungeana herbs. We assessed the capability of acetylcorynoline to regulate lipopolysaccharide (LPS)-stimulated activation of mouse bone marrow-derived DCs.
Our experimental data showed that treatment with up to 20μg ml-1 acetylcorynoline does not cause cytotoxicity in cells. Acetylcorynoline significantly inhibited the secretion of tumor necrosis factor-α, interleukin-6, and interleukin-12p70 by LPS-stimulated DCs. The expression of LPS-induced major histocompatibility complex class II, CD40, and CD86 on DCs was also decreased by acetylcorynoline, and the endocytic capacity of LPS-stimulated DCs was restored by acetylcorynoline. In addition, LPS-stimulated DC-elicited allogeneic T-cell proliferation was blocked by acetylcorynoline, and the migratory ability of LPS-stimulated DCs was reduced by acetylcorynoline. Moreover, acetylcorynoline significantly inhibits LPS-induced activation of IκB kinase and mitogen-activated protein kinase. Importantly, administration of acetylcorynoline significantly attenuates 2,4-dinitro-1-fluorobenzene-induced delayed-type hypersensitivity.
Acetylcorynoline may be one of the potent immunosuppressive agents through the blockage of DC maturation and function.

II. Development of mouse model of in situ thromboembolic stroke
Stroke is ranked cause of death around the world one of several diseases, vascular occlusion or rupture of brain nutrition can be called a stroke. Use of a skull mice right skull create pioneered surgery to identify the middle cerebral artery (MCA), thrombin microinjection into the MCA, middle cerebral artery coagulation stroke caused, followed by use of tail vein injection of Chinese herbal plant compounds to assess their utility antithrombotic and neurological behavior recovery situation.

中文摘要 I
Abstract IV
目錄 VII
圖目錄 XII
表目錄 XIV

壹、研究乙醯紫堇醇靈鹼對於小鼠樹突細胞成熟的影響
第一章 前言 1
第一節 研究背景 1
1.1.1 乙醯紫堇醇靈鹼的來源與其相關研究 1
1.1.2 樹突細胞在調節免疫系統上所扮演的角色 2
1.1.3 目前使用中草藥處理樹突細胞之相關研究 4
第二節 研究目的 8
第二章 研究方法與材料 9
第一節 研究方法 9
2.1.1 實驗動物守則 9
2.1.2 細胞存活力分析 9
2.1.3 細胞的活化與處理 10
2.1.4 細胞激素分析 10
2.1.5 細胞表面分子分析 10
2.1.6 細胞內吞作用分析 11
2.1.7 同種異體混合淋巴球反應 11
2.1.8 細胞移行分析 12
2.1.9 NF-κB分析 13
2.1.10 西方點墨法分析 13
2.1.11 抑制劑的處理 14
2.1.12 接觸性過敏反應分析 14
2.1.13 統計分析 15
第二節 研究材料 16
2.2.1 實驗用藥與抗體 16
2.2.2 小鼠骨髓樹突細胞的培養 17
第三章 研究結果 19
3.1 乙醯紫堇醇靈鹼對於細胞存活的影響 19
3.2 乙醯紫堇醇靈鹼對於脂多醣體誘導細胞分泌TNF-α、IL-6以及IL-12p70的抑制能力 19
3.3 乙醯紫堇醇靈鹼對於脂多醣體誘導細胞表面分子表現量的抑制能力 20
3.4乙醯紫堇醇靈鹼對於成熟之樹突細胞內吞作用的恢復 21
3.5乙醯紫堇醇靈鹼對於刺激不同源T細胞增生的抑制 21
3.6乙醯紫堇醇靈鹼對於細胞移行能力的抑制 22
3.7乙醯紫堇醇靈鹼對於脂多醣體誘導細胞分泌NF-κB p65轉位的抑制 22
3.8乙醯紫堇醇靈鹼對於脂多醣體誘導細胞分泌IKK與MAPK在細胞質內磷酸化的抑制能力 23
3.9乙醯紫堇醇靈鹼對於接觸性過敏性反應的抑制能力 24
第四章 討論 25
第五章 結論 29

貳、建立小鼠原位血栓栓塞中風模型
第一章 前言 30
第一節 研究背景 30
1.1腦中風介紹 30
1.2 目前在人類腦中風治療方法 30
1.3 為何要使用動物模型來研究腦中風 31
1.4 目前研究上使用的缺血性腦中風動物模型 32
1.5 凝血蛋白酶之作用機制 33
第二節 研究目的 35
第二章 研究方法與材料 36
第一節 研究方法 36
2.1.1 實驗動物 36
2.1.2麻醉實驗動物 36
2.1.3小鼠的顱骨開創術 37
2.1.4 中大腦動脈血流測定 37
2.1.5顯微注射凝血蛋白酶 37
2.1.6尾靜脈注射給予藥物 38
2.1.7 腦部切片與染色 39
2.1.8 八通道穿梭箱實驗 39
2.1.9 抓握力測試 39
2.1.10 擺盪測試 40
第二節 研究材料與藥劑 40
2.2.1 研究藥劑 40
2.2.2 研究材料 41
第三章 研究結果 42
3.1 都普勒血流儀分析 42
3.2 受損腦體積分析 42
3.3 抓握力分析 43
3.4 水平移動與垂直移動分析 44
3.5擺盪分析 44
第四章 討論 46
第五章 結論 48
參考文獻 49

1.Xie, C., et al., Flavonoid glycosides and isoquinolinone alkaloids from Corydalis bungeana. Phytochemistry, 2004. 65(22): p. 3041-7.

2.Niu, L.L., et al., Preparative isolation of alkaloids from Corydalis bungeana Turcz. by high-speed counter-current chromatography using stepwise elution. Journal of Separation Science, 2011. 34(9): p. 987-994.

3.Wei, H.L. and G.T. Liu, [Protective action of corynoline, acetylcorynoline and protopine against experimental liver injury in mice]. Yao Xue Xue Bao, 1997. 32(5): p. 331-6.

4.Banchereau, J., et al., Immunobiology of dendritic cells. Annu Rev Immunol, 2000. 18: p. 767-811.

5.Banchereau, J. and R.M. Steinman, Dendritic cells and the control of immunity. Nature, 1998. 392(6673): p. 245-52.

6.Leon, C.G., et al., Discovery and development of toll-like receptor 4 (TLR4) antagonists: a new paradigm for treating sepsis and other diseases. Pharm Res, 2008. 25(8): p. 1751-61.

7.Reis e Sousa, C., Dendritic cells in a mature age. Nat Rev Immunol, 2006. 6(6): p. 476-83.

8.Kaisho, T. and T. Tanaka, Turning NF-kappaB and IRFs on and off in DC. Trends Immunol, 2008. 29(7): p. 329-36.

9.Lu, Y.C., W.C. Yeh, and P.S. Ohashi, LPS/TLR4 signal transduction pathway. Cytokine, 2008. 42(2): p. 145-51.

10.Laird, M.H., et al., TLR4/MyD88/PI3K interactions regulate TLR4 signaling. J Leukoc Biol, 2009. 85(6): p. 966-77.

11.Bode, J.G., C. Ehlting, and D. Haussinger, The macrophage response towards LPS and its control through the p38(MAPK)-STAT3 axis. Cellular Signalling, 2012. 24(6): p. 1185-1194.

12.Thobe, B.M., et al., The role of MAPK in Kupffer cell toll-like receptor (TLR) 2-, TLR4-, and TLR9-mediated signaling following trauma-hemorrhage. J Cell Physiol, 2007. 210(3): p. 667-75.

13.Figdor, C.G., et al., Dendritic cell immunotherapy: mapping the way. Nat Med, 2004. 10(5): p. 475-80.

14.Fu, R.H., et al., Lipopolysaccharide-stimulated activation of murine DC2.4 cells is attenuated by n-butylidenephthalide through suppression of the NF-kappaB pathway. Biotechnol Lett, 2011. 33(5): p. 903-10.

15.Fu, R.H., et al., Myricetin attenuates lipopolysaccharide-stimulated activation of mouse bone marrow-derived dendritic cells through suppression of IKK/NF-kappaB and MAPK signalling pathways. J Sci Food Agric, 2012.

16.Huang, R.Y., et al., Immunosuppressive effect of quercetin on dendritic cell activation and function. J Immunol, 2010. 184(12): p. 6815-21.

17.Kim, J.S. and C. Jobin, The flavonoid luteolin prevents lipopolysaccharide-induced NF-kappaB signalling and gene expression by blocking IkappaB kinase activity in intestinal epithelial cells and bone-marrow derived dendritic cells. Immunology, 2005. 115(3): p. 375-87.

18.Li, C.Y., et al., Honokiol inhibits LPS-induced maturation and inflammatory response of human monocyte-derived dendritic cells. J Cell Physiol, 2011. 226(9): p. 2338-49.

19.Lin, M.K., et al., Kaempferol from Semen cuscutae attenuates the immune function of dendritic cells. Immunobiology, 2011. 216(10): p. 1103-9.
20.Liu, Y., et al., Triptolide, a component of Chinese herbal medicine, modulates the functional phenotype of dendritic cells. Transplantation, 2007. 84(11): p. 1517-26.

21.Mitsui, S., et al., The herbal medicine compound falcarindiol from Notopterygii Rhizoma suppresses dendritic cell maturation. J Pharmacol Exp Ther, 2010. 333(3): p. 954-60.

22.Nhiem, N.X., et al., Anti-inflammatory activity on LPS-stimulated dendritic cells of lupanetype triterpenoids from the leaves of Acanthopanax koreanum. Arch Pharm Res, 2011. 34(10): p. 1593-8.

23.Yu, Y.L., et al., A triterpenoid methyl antcinate K isolated from Antrodia cinnamomea promotes dendritic cell activation and Th2 differentiation. Eur J Immunol, 2009. 39(9): p. 2482-91.

24.Zhou, B.N., Some progress on the chemistry of natural bioactive terpenoids from Chinese medicinal plants. Mem Inst Oswaldo Cruz, 1991. 86 Suppl 2: p. 219-26.

25.Chen, B.J., Triptolide, a novel immunosuppressive and anti-inflammatory agent purified from a Chinese herb Tripterygium wilfordii Hook F. Leuk Lymphoma, 2001. 42(3): p. 253-65.

26.Qiu, D. and P.N. Kao, Immunosuppressive and anti-inflammatory mechanisms of triptolide, the principal active diterpenoid from the Chinese medicinal herb Tripterygium wilfordii Hook. f. Drugs R D, 2003. 4(1): p. 1-18.

27.Novak, N., et al., Standardized extracts from Chinese herbs induce IL-10 production in human monocyte-derived dendritic cells and alter their differentiation in vitro. J Allergy Clin Immunol, 2001. 108(4): p. 588-93.

28.Block, K.I. and M.N. Mead, Immune system effects of echinacea, ginseng, and astragalus: a review. Integr Cancer Ther, 2003. 2(3): p. 247-67.
29.Nabeshima, S., et al., Maturation of monocyte-derived dendritic cells by Hochu-ekki-to, a traditional Japanese herbal medicine. Int Immunopharmacol, 2004. 4(1): p. 37-45.

30.Shao, P., et al., Regulation on maturation and function of dendritic cells by Astragalus mongholicus polysaccharides. International Immunopharmacology, 2006. 6(7): p. 1161-1166.

31.Chen, X., et al., Triptolide, a constituent of immunosuppressive Chinese herbal medicine, is a potent suppressor of dendritic-cell maturation and trafficking. Blood, 2005. 106(7): p. 2409-16.

32.Liu, J., et al., Triptolide suppresses CD80 and CD86 expressions and IL-12 production in THP-1 cells. Acta Pharmacol Sin, 2005. 26(2): p. 223-7.

33.Zhu, K.J., et al., Triptolide affects the differentiation, maturation and function of human dendritic cells. Int Immunopharmacol, 2005. 5(9): p. 1415-26.

34.Liu, Q.Y., et al., Triptolide (PG-490) induces apoptosis of dendritic cells through sequential p38 MAP kinase phosphorylation and caspase 3 activation. Biochemical and Biophysical Research Communications, 2004. 319(3): p. 980-986.

35.Lee, C.C., et al., Shikonin inhibits maturation of bone marrow-derived dendritic cells and suppresses allergic airway inflammation in a murine model of asthma. Br J Pharmacol, 2010. 161(7): p. 1496-511.

36.Gu, X., et al., Hesperetin inhibits the maturation and function of monocyte-derived dendritic cells from patients with asthma. Mol Med Rep, 2009. 2(3): p. 509-13.

37.Lin, Y.L., et al., Polysaccharide purified from Ganoderma lucidum induces gene expression changes in human dendritic cells and promotes T helper 1 immune response in BALB/c mice. Mol Pharmacol, 2006. 70(2): p. 637-44.

38.Lin, Y.L., et al., Polysaccharide purified from Ganoderma lucidum induced activation and maturation of human monocyte-derived dendritic cells by the NF-kappaB and p38 mitogen-activated protein kinase pathways. J Leukoc Biol, 2005. 78(2): p. 533-43.

39.Wang, B., Y. Hu, and J. Li, [Effect of Ganoderma triterpene on proliferation of dendritic cells from mouse spleen]. Zhong Yao Cai, 2005. 28(7): p. 577-9.

40.Chen, H.S., et al., Studies on the immuno-modulating and anti-tumor activities of Ganoderma lucidum (Reishi) polysaccharides. Bioorg Med Chem, 2004. 12(21): p. 5595-601.

41.Hsu, H.Y., et al., Extract of Reishi polysaccharides induces cytokine expression via TLR4-modulated protein kinase signaling pathways. J Immunol, 2004. 173(10): p. 5989-99.

42.Lin, K.I., et al., Reishi polysaccharides induce immunoglobulin production through the TLR4/TLR2-mediated induction of transcription factor Blimp-1. Journal of Biological Chemistry, 2006. 281(34): p. 24111-24123.

43.Shao, B.M., et al., Immune receptors for polysaccharides from Ganoderma lucidum. Biochem Biophys Res Commun, 2004. 323(1): p. 133-41.

44.Shao, P., et al., Regulation on maturation and function of dendritic cells by Astragalus mongholicus polysaccharides. Int Immunopharmacol, 2006. 6(7): p. 1161-6.

45.Shao, B.M., et al., A study on the immune receptors for polysaccharides from the roots of Astragalus membranaceus, a Chinese medicinal herb. Biochem Biophys Res Commun, 2004. 320(4): p. 1103-11.

46.He, Y.L., et al., [Effects of Lycium barbarum polysaccharide on tumor microenvironment T-lymphocyte subsets and dendritic cells in H22-bearing mice]. Zhong Xi Yi Jie He Xue Bao, 2005. 3(5): p. 374-7.

47.Chan, W.K., et al., Ganoderma lucidum mycelium and spore extracts as natural adjuvants for immunotherapy. Journal of Alternative and Complementary Medicine, 2005. 11(6): p. 1047-1057.

48.Takei, M., et al., Dendritic cells maturation promoted by M1 and M4, end products of steroidal ginseng saponins metabolized in digestive tracts, drive a potent Th1 polarization. Biochem Pharmacol, 2004. 68(3): p. 441-52.

49.Fang, F., et al., Transcription factor E2F1 suppresses dendritic cell maturation. J Immunol, 2010. 184(11): p. 6084-91.

50.Liu, C., et al., Gamma-ray irradiation impairs dendritic cell migration to CCL19 by down-regulation of CCR7 and induction of cell apoptosis. Int J Biol Sci, 2011. 7(2): p. 168-79.

51.Yoon, M.S., et al., Apigenin inhibits immunostimulatory function of dendritic cells: Implication of immunotherapeutic adjuvant. Mol Pharmacol, 2006. 70(3): p. 1033-44.

52.Guha, M. and N. Mackman, LPS induction of gene expression in human monocytes. Cell Signal, 2001. 13(2): p. 85-94.

53.Summers deLuca, L. and J.L. Gommerman, Fine-tuning of dendritic cell biology by the TNF superfamily. Nat Rev Immunol, 2012. 12(5): p. 339-51.

54.Murakami, M. and N. Nishimoto, The value of blocking IL-6 outside of rheumatoid arthritis: current perspective. Curr Opin Rheumatol, 2011. 23(3): p. 273-7.

55.Gommerman, J.L. and L. Summers deLuca, LTbetaR and CD40: working together in dendritic cells to optimize immune responses. Immunol Rev, 2011. 244(1): p. 85-98.

56.Burgdorf, S. and C. Kurts, Endocytosis mechanisms and the cell biology of antigen presentation. Curr Opin Immunol, 2008. 20(1): p. 89-95.

57.Trombetta, E.S. and I. Mellman, Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol, 2005. 23: p. 975-1028.

58.Garrett, W.S., et al., Developmental control of endocytosis in dendritic cells by Cdc42. Cell, 2000. 102(3): p. 325-34.

59.Sanchez-Sanchez, N., L. Riol-Blanco, and J.L. Rodriguez-Fernandez, The multiple personalities of the chemokine receptor CCR7 in dendritic cells. J Immunol, 2006. 176(9): p. 5153-9.

60.Ardeshna, K.M., et al., The PI3 kinase, p38 SAP kinase, and NF-kappaB signal transduction pathways are involved in the survival and maturation of lipopolysaccharide-stimulated human monocyte-derived dendritic cells. Blood, 2000. 96(3): p. 1039-46.

61.Aicher, A., et al., Differential role for p38 mitogen-activated protein kinase in regulating CD40-induced gene expression in dendritic cells and B cells. J Immunol, 1999. 163(11): p. 5786-95.

62.Yu, Q., et al., The role of the p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and phosphoinositide-3-OH kinase signal transduction pathways in CD40 ligand-induced dendritic cell activation and expansion of virus-specific CD8+ T cell memory responses. J Immunol, 2004. 172(10): p. 6047-56.

63.Rescigno, M., et al., Dendritic cell survival and maturation are regulated by different signaling pathways. J Exp Med, 1998. 188(11): p. 2175-80.

64.Uto, T., et al., Inhibitory effect of cepharanthine on dendritic cell activation and function. Int Immunopharmacol, 2011. 11(11): p. 1932-8.

65.Chen, Y., et al., Tetrandrine attenuates dendritic cell-mediated alloimmune responses and prolongs graft survival in mice. Planta Med, 2010. 76(13): p. 1424-30.

66.Chen, Y., et al., Sinomenine promotes differentiation but impedes maturation and co-stimulatory molecule expression of human monocyte-derived dendritic cells. Int Immunopharmacol, 2007. 7(8): p. 1102-10.

67.Nouri-Shirazi, M. and E. Guinet, Evidence for the immunosuppressive role of nicotine on human dendritic cell functions. Immunology, 2003. 109(3): p. 365-73.

68.Delzoppo, G.J., Investigational Use of Tpa in Acute Stroke. Annals of Emergency Medicine, 1988. 17(11): p. 1196-1201.

69.Benchenane, K., et al., Tissue-type plasminogen activator crosses the intact blood-brain barrier by low-density lipoprotein receptor-related protein-mediated transcytosis. Circulation, 2005. 111(17): p. 2241-9.

70.Benchenane, K., et al., Anti-NR1 N-terminal-domain vaccination unmasks the crucial action of tPA on NMDA-receptor-mediated toxicity and spatial memory. J Cell Sci, 2007. 120(Pt 4): p. 578-85.

71.Nicole, O., et al., The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat Med, 2001. 7(1): p. 59-64.

72.Wang, Y.F., et al., Tissue plasminogen activator (tPA) increases neuronal damage after focal cerebral ischemia in wild-type and tPA-deficient mice. Nat Med, 1998. 4(2): p. 228-31.

73.Ginsberg, M.D. and R. Busto, Rodent Models of Cerebral-Ischemia. Stroke, 1989. 20(12): p. 1627-1642.

74.Molinari, G.F., Why Model Strokes. Stroke, 1988. 19(10): p. 1195-1197.

75.Garcia, J.H., Experimental ischemic stroke: a review. Stroke, 1984. 15(1): p. 5-14.

76.Liss, L., Classification of brain tumors and experimental models. Prog Exp Tumor Res, 1972. 17: p. 1-8.

77.Ponten, U., et al., Optimal freezing conditions for cerebral metabolites in rats. J Neurochem, 1973. 21(5): p. 1127-38.

78.Tamura, A., et al., Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab, 1981. 1(1): p. 53-60.

79.Bederson, J.B., et al., Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke, 1986. 17(3): p. 472-6.

80.Bederson, J.B., et al., Rat Middle Cerebral-Artery Occlusion - Evaluation of the Model and Development of a Neurologic Examination. Stroke, 1986. 17(3): p. 472-476.

81.Okamoto, K., et al., Establishment and use of the M strain of stroke-prone spontaneously hypertensive rat. J Hypertens Suppl, 1986. 4(3): p. S21-4.

82.Ogata, J., et al., Cerebral infarction following bilateral carotid artery ligation in normotensive and spontaneously hypertensive rats: a pathological study. Stroke, 1976. 7(1): p. 54-60.

83.Fujishima, M., et al., Changes in Local Cerebral Blood-Flow Following Bilateral Carotid Occlusion in Spontaneously Hypertensive and Normotensive Rats. Stroke, 1981. 12(6): p. 874-876.

84.Brint, S., et al., Focal Brain Ischemia in the Rat - Methods for Reproducible Neocortical Infarction Using Tandem Occlusion of the Distal Middle Cerebral and Ipsilateral Common Carotid Arteries. Journal of Cerebral Blood Flow and Metabolism, 1988. 8(4): p. 474-485.

85.Duverger, D. and E.T. MacKenzie, The quantification of cerebral infarction following focal ischemia in the rat: influence of strain, arterial pressure, blood glucose concentration, and age. J Cereb Blood Flow Metab, 1988. 8(4): p. 449-61.

86.Shigeno, T., et al., Recirculation Model Following Mca Occlusion in Rats - Cerebral Blood-Flow, Cerebrovascular Permeability, and Brain Edema. Journal of Neurosurgery, 1985. 63(2): p. 272-277.

87.Longa, E.Z., et al., Reversible Middle Cerebral-Artery Occlusion without Craniectomy in Rats. Stroke, 1989. 20(1): p. 84-91.

88.Nagasawa, H. and K. Kogure, Correlation between Cerebral Blood-Flow and Histologic-Changes in a New Rat Model of Middle Cerebral-Artery Occlusion. Stroke, 1989. 20(8): p. 1037-1043.

89.Salvagnini, C., et al., Design, synthesis and evaluation of graftable thrombin inhibitors for the preparation of blood-compatible polymer materials. Organic & Biomolecular Chemistry, 2005. 3(23): p. 4209-4220.

90.Viles-Gonzalez, J.F., V. Fuster, and J.J. Badimon, Thrombin/inflammation paradigms: a closer look at arterial and venous thrombosis. Am Heart J, 2005. 149(1 Suppl): p. S19-31.

91.Di Cera, E., Thrombin as procoagulant and anticoagulant. Journal of Thrombosis and Haemostasis, 2007. 5: p. 196-202.

92.Orset, C., et al., Mouse model of in situ thromboembolic stroke and reperfusion. Stroke, 2007. 38(10): p. 2771-8.

93.Romanos, E., et al., Uric acid reduces brain damage and improves the benefits of rt-PA in a rat model of thromboembolic stroke. J Cereb Blood Flow Metab, 2007. 27(1): p. 14-20.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 壹、建立新穎之小鼠FeCl3誘導原位血栓栓塞中風及再灌流模型;貳、研究次野鳶尾黃素對小鼠成熟樹突細胞的免疫調節效應
2. 研究似硫化物醌還原酶在c9orf72基因突變關聯之肌萎縮性脊髓側索硬化症中所扮演的角色
3. 壹、利用秀麗隱桿線蟲模型評估次野鳶尾黃素在改善帕金森氏症的治療潛力;貳、建立酵母菌及SH-SY5Y細胞的帕金森氏症模型
4. 利用藥理學及轉基因秀麗隱桿線蟲模型評估樺木醇抗帕金森氏症之效用
5. 探討BCAS1基因之剪接變異體在神經膠質母細胞瘤中所扮演的角色
6. 壹、評估乙醯紫堇醇靈鹼對帕金森氏症秀麗隱桿線蟲模型的影響貳、建立秀麗隱桿線蟲顯微注射技術
7. 探討BP180調控攝護腺癌細胞伸展與移行之機制
8. 壹、使用蛋白體學研究技術建立Cu/Zn過氧化物歧化酶(SOD1)突變之肌萎縮性側索硬化症(ALS)的治療策略貳、研究楊梅素(Myricetin)對脂多醣體刺激活化之小鼠樹突細胞的免疫調節效應
9. I. CPAPAP-1 蛋白質在 NF-κB 途徑上功能性之研究II. 傳統中醫藥對樹突細胞活性上的抑制效應
10. 利用秀麗隱桿線蟲模型研究水仙苷之抗帕金森氏症的效力
11. 利用藥理學及轉基因秀麗隱桿線蟲模型評估高麗槐素抗帕金森氏症之效用
12. 失眠患者針灸三陰交其經絡和腦波變化之研究
13. I.鑑定CPAPAP-1蛋白質在NF-kB途徑上所扮演之角色II.研究3-正丁烯基苯酞對脂多醣體刺激活化之小鼠樹突細胞株DC 2.4 的免疫調節效應
14. 壹、利用藥理學和轉基因秀麗隱感線蟲模型研究chiisanoside的抗帕金森的功用;貳、人類小膠質細胞模型中環核苷酸結合域2(CNBD2)蛋白質在炎症相關α-突觸核蛋白病中的角色:聚焦於帕金森病
15. 不同嚴重度的偏頭痛與中醫診斷之關聯性