|
1.Ashbee HR, and E. G. Evans. Immunology of Diseases Associated with Malassezia Species. Clinical Microbiology Reviews 15: 21-57. 2002. 2.Watanabe S KR, Sato H, Nakamura Y, Hasegawa A The Effects of Malassezia Yeasts on Cytokine Production by Human Keratinocyte. J Invest Dermatol 116: 769-773. 2001. 3.Gaitanis G. MP, Hantschke M., Bassukas I. D., Velegraki, A. The Malassezia genus in skin and systemic diseases. Clin Microbiol Rev 25: 106-41. 2012. 4.Aspres N and Anderson C Malassezia yeasts in the pathogenesis of atopic dermatitis. Australas J Dermatol 45: 199-205; quiz 206-7. 2004. 5.Crespo-Erchiga V FV Malassezia yeasts and pityriasis versicolor. Curr Opin Infect Dis 19: 139-147. 2006. 6.Back O, Faergemann J, and Hornqvist R Pityrosporum folliculitis: a common disease of the young and middle-aged. J Am Acad Dermatol 12: 56-61. 1985. 7.Bergbrant IM and Faergemann J The role of Pityrosporum ovale in seborrheic dermatitis. Semin Dermatol 9: 262-8. 1990. 8.Rosenberg EW and Noah PW The Koebner phenomenon and the microbial basis of psoriasis. J Am Acad Dermatol 18: 151-8. 1988. 9.Gupta AK, Batra R, Bluhm R, et al. Skin diseases associated with Malassezia species. J Am Acad Dermatol 51: 785-98. 2004. 10.Romani L Immunity to fungal infections. Nat Rev Immunol 11: 275-88. 2011. 11.Schmidt A Malassezia furfur: a fungus belonging to the physiological skin flora and its relevance in skin disorders. Cutis 59: 21-4. 1997. 12.Ashbee HR Recent developments in the immunology and biology of Malassezia species. FEMS Immunol Med Microbiol 47: 14-23. 2006. 13.Nestle FO, Di Meglio P, Qin JZ, et al. Skin immune sentinels in health and disease. Nat Rev Immunol 9: 679-91. 2009. 14.Ryu S, Choi SY, Acharya S, et al. Antimicrobial and anti-inflammatory effects of Cecropin A(1-8)-Magainin2(1-12) hybrid peptide analog p5 against Malassezia furfur infection in human keratinocytes. J Invest Dermatol 131: 1677-83. 2011. 15.Weinberg A, Krisanaprakornkit S, and Dale BA Epithelial antimicrobial peptides: review and significance for oral applications. Crit Rev Oral Biol Med 9: 399-414. 1998. 16.Niyonsaba F, Hirata M, Ogawa H, et al. Epithelial cell-derived antibacterial peptides human beta-defensins and cathelicidin: multifunctional activities on mast cells. Curr Drug Targets Inflamm Allergy 2: 224-31. 2003. 17.Schibli DJ, Hunter HN, Aseyev V, et al. The solution structures of the human beta-defensins lead to a better understanding of the potent bactericidal activity of HBD3 against Staphylococcus aureus. J Biol Chem 277: 8279-89. 2002. 18.Donnarumma G, Paoletti I, Buommino E, et al. Malassezia furfur induces the expression of beta-defensin-2 in human keratinocytes in a protein kinase C-dependent manner. Arch Dermatol Res 295: 474-81. 2004. 19.Donnarumma G, Buommino E, Baroni A, et al. Effects of AV119, a natural sugar from avocado, on Malassezia furfur invasiveness and on the expression of HBD-2 and cytokines in human keratinocytes. Exp Dermatol 16: 912-9. 2007. 20.Filip R, Davicino R, and Anesini C Antifungal activity of the aqueous extract of Ilex paraguariensis against Malassezia furfur. Phytother Res 24: 715-9. 2010. 21.Cowen LE The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat Rev Microbiol 6: 187-98. 2008. 22.Hammer KA CC, Riley TV. In vitro activities of ketoconazole, econazole, miconazole, and Melaleuca alternifolia (tea tree) oil against Malassezia species. Antimicrob Agents Chemother 44: 467-469. 2000. 23.Wi HS, Na EY, Yun SJ, et al. The antifungal effect of light emitting diode on Malassezia yeasts. J Dermatol Sci 67: 3-8. 2012. 24.Faergemann J Management of seborrheic dermatitis and pityriasis versicolor. Am J Clin Dermatol 1: 75-80. 2000. 25.Burt S Essential oils: their antibacterial properties and potential applications in foods--a review. Int J Food Microbiol 94: 223-53. 2004. 26.Bakkali F, Averbeck S, Averbeck D, et al. Biological effects of essential oils--a review. Food Chem Toxicol 46: 446-75. 2008. 27.Pourmortazavi SM and Hajimirsadeghi SS Supercritical fluid extraction in plant essential and volatile oil analysis. J Chromatogr A 1163: 2-24. 2007. 28.Miguel MG Antioxidant and anti-inflammatory activities of essential oils: a short review. Molecules 15: 9252-87. 2010. 29.Katsukawa M, Nakata R, Takizawa Y, et al. Citral, a component of lemongrass oil, activates PPARalpha and gamma and suppresses COX-2 expression. Biochim Biophys Acta 1801: 1214-20. 2010. 30.Carbajal D, Casaco A, Arruzazabala L, et al. Pharmacological study of Cymbopogon citratus leaves. J Ethnopharmacol 25: 103-7. 1989. 31.Figueirinha A, Cruz MT, Francisco V, et al. Anti-inflammatory activity of Cymbopogon citratus leaf infusion in lipopolysaccharide-stimulated dendritic cells: contribution of the polyphenols. J Med Food 13: 681-90. 2010. 32.Sforcin JM, Amaral JT, Fernandes A, Jr., et al. Lemongrass effects on IL-1beta and IL-6 production by macrophages. Nat Prod Res 23: 1151-9. 2009. 33.Zore GB, Thakre AD, Jadhav S, et al. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomedicine 18: 1181-90. 2011. 34.Bachiega TF and Sforcin JM Lemongrass and citral effect on cytokines production by murine macrophages. J Ethnopharmacol 137: 909-13. 2011. 35.Nakamura Y, Kano R, Murai T, et al. Susceptibility testing of Malassezia species using the urea broth microdilution method. Antimicrob Agents Chemother 44: 2185-6. 2000. 36.Chen Z, Tong L, Li Z, et al. Hyperosmolarity-induced cornification of human corneal epithelial cells is regulated by JNK MAPK. Invest Ophthalmol Vis Sci 49: 539-49. 2008. 37.Smrz D, Draberova L, and Draber P Non-apoptotic phosphatidylserine externalization induced by engagement of glycosylphosphatidylinositol-anchored proteins. J Biol Chem 282: 10487-97. 2007. 38.Phillips AJ, Sudbery I, and Ramsdale M Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc Natl Acad Sci U S A 100: 14327-32. 2003. 39.Frank Madeo SW, Markus Fehr et al A caspase related protease regulates apoptosis in yeast. Molecular Cell 9,: 911-917. 2002. 40.Rockenfeller P and Madeo F Apoptotic death of ageing yeast. Exp Gerontol 43: 876-81. 2008. 41.Oh JY, Baek YM, Kim SW, et al. Apoptosis of human hepatocarcinoma (HepG2) and neuroblastoma (SKN-SH) cells induced by polysaccharides-peptide complexes produced by submerged mycelial culture of an entomopathogenic fungus Cordyceps sphecocephala. J Microbiol Biotechnol 18: 512-9. 2008. 42.Frank Madeo EF, and Kai-Uwe Frohlich A Yeast Mutant Showing Diagnostic Markers of Early and Late Apoptosis. J Cell Biol 139: 729-734. 1997. 43.Buttner S, Eisenberg T, Herker E, et al. Why yeast cells can undergo apoptosis: death in times of peace, love, and war. J Cell Biol 175: 521-5. 2006. 44.Herker E, Jungwirth H, Lehmann KA, et al. Chronological aging leads to apoptosis in yeast. J Cell Biol 164: 501-7. 2004. 45.Carmona-Gutierrez D, Eisenberg T, Buttner S, et al. Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ 17: 763-73. 2010. 46.Cho J and Lee DG Oxidative stress by antimicrobial peptide pleurocidin triggers apoptosis in Candida albicans. Biochimie 93: 1873-9. 2011. 47.Hwang B, Hwang JS, Lee J, et al. Induction of yeast apoptosis by an antimicrobial peptide, Papiliocin. Biochem Biophys Res Commun 408: 89-93. 2011. 48.Hwang B, Hwang JS, Lee J, et al. The antimicrobial peptide, psacotheasin induces reactive oxygen species and triggers apoptosis in Candida albicans. Biochem Biophys Res Commun 405: 267-71. 2011. 49.Uren AG, O''Rourke K, Aravind LA, et al. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6: 961-7. 2000. 50.Akaza N, Akamatsu H, Takeoka S, et al. Increased hydrophobicity in Malassezia species correlates with increased proinflammatory cytokine expression in human keratinocytes. Med Mycol 50: 802-10. 2012. 51.Mittag H Fine structural investigation of Malassezia furfur. II. The envelope of the yeast cells. Mycoses 38: 13-21. 1995. 52.Baroni A. PB, Paoletti I., Ruocco E., Canozo N., Orlando M., Buommino E. Malassezia furfur invasiveness in a keratinocyte cell line (HaCat): effects on cytoskeleton and on adhesion molecule and cytokine expression. Arch Dermatol Res 293: 411-419. 2001. 53.Ishibashi Y, Sugawara K, Sugita T, et al. Secretion of thymic stromal lymphopoietin from human keratinocytes in response to Malassezia yeasts. J Dermatol Sci 62: 134-8. 2011. 54.Netea MG, Van Der Graaf CA, Vonk AG, et al. The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J Infect Dis 185: 1483-9. 2002. 55.Pivarcsi A, Bodai L, Rethi B, et al. Expression and function of Toll-like receptors 2 and 4 in human keratinocytes. Int Immunol 15: 721-30. 2003. 56.Baroni A, Orlando M, Donnarumma G, et al. Toll-like receptor 2 (TLR2) mediates intracellular signalling in human keratinocytes in response to Malassezia furfur. Arch Dermatol Res 297: 280-8. 2006. 57.Harada M, Hirota T, Jodo AI, et al. Functional analysis of the thymic stromal lymphopoietin variants in human bronchial epithelial cells. Am J Respir Cell Mol Biol 40: 368-74. 2009. 58.Harada M, Hirota T, Jodo AI, et al. Thymic stromal lymphopoietin gene promoter polymorphisms are associated with susceptibility to bronchial asthma. Am J Respir Cell Mol Biol 44: 787-93. 2011. 59.Hirota T, Takahashi A, Kubo M, et al. Genome-wide association study identifies three new susceptibility loci for adult asthma in the Japanese population. Nat Genet 43: 893-6. 2011. 60.Xie Y, Takai T, Chen X, et al. Long TSLP transcript expression and release of TSLP induced by TLR ligands and cytokines in human keratinocytes. J Dermatol Sci 66: 233-7. 2012. 61.Liu YJ Thymic stromal lymphopoietin: master switch for allergic inflammation. J Exp Med 203: 269-73. 2006.
|