(3.227.235.183) 您好!臺灣時間:2021/04/14 19:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉易慈
研究生(外文):Yi-Tsz Liu
論文名稱:檸檬醛對Malassezia furfur之抑制機制探討
論文名稱(外文):The inhibitory activity of citral against Malassezia furfur
指導教授:賴雯玲賴雯玲引用關係
指導教授(外文):Wen-Lin Lai
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:醫學檢驗暨生物技術學系碩士班
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:65
相關次數:
  • 被引用被引用:1
  • 點閱點閱:444
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目錄
致謝……………………………………………………………………i
中文摘要…………………………………………………………………ii
英文摘要…………………………………………………………………iii
目錄……………………………………………………………………iv
圖表目錄…………………………………………………………………vii
附錄目錄…………………………………………………………………viii

第一章、緒論……………………………………………………………1
第一節、Malassezia菌屬……………………………………………1
1. Malassezia菌屬介紹…………………………………………1
2. Malassezia致病機制…………………………………………2
3. 人體皮膚對Malassezia之免疫防禦…………………………3
4. 抗Malassezia感染方式與其面臨之困境……………………5
第二節、植物精油……………………………………………………7
1. 植物精油介紹…………………………………………………7
2. 檸檬香茅精油…………………………………………………8
3. Citral (檸檬醛) ………………………………………………8
第三節、研究目的與實驗設計………………………………………9
1. 研究目的………………………………………………………9
2. 實驗設計……………………………………………………10
第二章、材料與方法……………………………………………………11
第一節、材料………………………………………………………11
1. 實驗藥品……………………………………………………11
2. 儀器設備……………………………………………………11
3. 菌株及細胞株………………………………………………12
4. Citral配製……………………………………………………12
5. 培養基及培養液……………………………………………12
6. 緩衝液與實驗試液…………………………………………13
第二節、實驗方法……………………………………………………14
1. M. furfur 培養………………………………………………14
2. M. furfur對citral感受性實驗………………………………15
3. Citral對M. furfur型態影響分析……………………………16
4. M. furfur細胞凋亡分析………………………………………16
5. 角質細胞培養………………………………………………18
6. 細胞存活率分析 (MTT assay) ……………………………19
7. M. furfur感染能力分析………………………………………19
8. ELISA 分析…………………………………………………20
9. RNA 之萃取…………………………………………………21
10. cDNA之合成…………………………………………………22
11. Real-time PCR………………………………………………22
12. 統計分析……………………………………………………23
第三章、結果……………………………………………………………24
第一節、M. furfur對citral之感受性…………………………………24
第二節、Citral影響M. furfur型態轉變………………………………24
第三節、Citral誘發M. furfur細胞凋亡現象…………………………25
1. Phosphatidylserine externalization……………………………26
2. DNA fragmentation…………………………………………26
3. Metacaspase activation………………………………………27
第四節、Citral抑制M. furfur對角質細胞的感染……………………28
1. Citral對HaCat之細胞毒性試驗……………………………28
2. Citral抑制M. furfur對HaCat的黏附能力…………………28
3. Citral抑制M. furfur對HaCat的侵襲能力…………………29
第五節、Citral對角質細胞的免疫調節……………………………29
1. TLR2、HBD2與TSLP基因表現分析………………………30
2. 細胞激素表現分析…………………………………………32
第四章、討論……………………………………………………………33
第一節、Citral對抗M. furfur之潛力與其殺菌機制探討…………33
第二節、Citral影響M. furfur感染人類角質細胞之機制探討……34
第三節、Citral對角質細胞免疫調控之影響………………………35
第五章、參考文獻………………………………………………………37

表與圖……………………………………………………………………44
附錄………………………………………………………………………60



1.Ashbee HR, and E. G. Evans. Immunology of Diseases Associated with Malassezia Species. Clinical Microbiology Reviews 15: 21-57. 2002.
2.Watanabe S KR, Sato H, Nakamura Y, Hasegawa A The Effects of Malassezia Yeasts on Cytokine Production by Human Keratinocyte. J Invest Dermatol 116: 769-773. 2001.
3.Gaitanis G. MP, Hantschke M., Bassukas I. D., Velegraki, A. The Malassezia genus in skin and systemic diseases. Clin Microbiol Rev 25: 106-41. 2012.
4.Aspres N and Anderson C Malassezia yeasts in the pathogenesis of atopic dermatitis. Australas J Dermatol 45: 199-205; quiz 206-7. 2004.
5.Crespo-Erchiga V FV Malassezia yeasts and pityriasis versicolor. Curr Opin Infect Dis 19: 139-147. 2006.
6.Back O, Faergemann J, and Hornqvist R Pityrosporum folliculitis: a common disease of the young and middle-aged. J Am Acad Dermatol 12: 56-61. 1985.
7.Bergbrant IM and Faergemann J The role of Pityrosporum ovale in seborrheic dermatitis. Semin Dermatol 9: 262-8. 1990.
8.Rosenberg EW and Noah PW The Koebner phenomenon and the microbial basis of psoriasis. J Am Acad Dermatol 18: 151-8. 1988.
9.Gupta AK, Batra R, Bluhm R, et al. Skin diseases associated with Malassezia species. J Am Acad Dermatol 51: 785-98. 2004.
10.Romani L Immunity to fungal infections. Nat Rev Immunol 11: 275-88. 2011.
11.Schmidt A Malassezia furfur: a fungus belonging to the physiological skin flora and its relevance in skin disorders. Cutis 59: 21-4. 1997.
12.Ashbee HR Recent developments in the immunology and biology of Malassezia species. FEMS Immunol Med Microbiol 47: 14-23. 2006.
13.Nestle FO, Di Meglio P, Qin JZ, et al. Skin immune sentinels in health and disease. Nat Rev Immunol 9: 679-91. 2009.
14.Ryu S, Choi SY, Acharya S, et al. Antimicrobial and anti-inflammatory effects of Cecropin A(1-8)-Magainin2(1-12) hybrid peptide analog p5 against Malassezia furfur infection in human keratinocytes. J Invest Dermatol 131: 1677-83. 2011.
15.Weinberg A, Krisanaprakornkit S, and Dale BA Epithelial antimicrobial peptides: review and significance for oral applications. Crit Rev Oral Biol Med 9: 399-414. 1998.
16.Niyonsaba F, Hirata M, Ogawa H, et al. Epithelial cell-derived antibacterial peptides human beta-defensins and cathelicidin: multifunctional activities on mast cells. Curr Drug Targets Inflamm Allergy 2: 224-31. 2003.
17.Schibli DJ, Hunter HN, Aseyev V, et al. The solution structures of the human beta-defensins lead to a better understanding of the potent bactericidal activity of HBD3 against Staphylococcus aureus. J Biol Chem 277: 8279-89. 2002.
18.Donnarumma G, Paoletti I, Buommino E, et al. Malassezia furfur induces the expression of beta-defensin-2 in human keratinocytes in a protein kinase C-dependent manner. Arch Dermatol Res 295: 474-81. 2004.
19.Donnarumma G, Buommino E, Baroni A, et al. Effects of AV119, a natural sugar from avocado, on Malassezia furfur invasiveness and on the expression of HBD-2 and cytokines in human keratinocytes. Exp Dermatol 16: 912-9. 2007.
20.Filip R, Davicino R, and Anesini C Antifungal activity of the aqueous extract of Ilex paraguariensis against Malassezia furfur. Phytother Res 24: 715-9. 2010.
21.Cowen LE The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat Rev Microbiol 6: 187-98. 2008.
22.Hammer KA CC, Riley TV. In vitro activities of ketoconazole, econazole, miconazole, and Melaleuca alternifolia (tea tree) oil against Malassezia species. Antimicrob Agents Chemother 44: 467-469. 2000.
23.Wi HS, Na EY, Yun SJ, et al. The antifungal effect of light emitting diode on Malassezia yeasts. J Dermatol Sci 67: 3-8. 2012.
24.Faergemann J Management of seborrheic dermatitis and pityriasis versicolor. Am J Clin Dermatol 1: 75-80. 2000.
25.Burt S Essential oils: their antibacterial properties and potential applications in foods--a review. Int J Food Microbiol 94: 223-53. 2004.
26.Bakkali F, Averbeck S, Averbeck D, et al. Biological effects of essential oils--a review. Food Chem Toxicol 46: 446-75. 2008.
27.Pourmortazavi SM and Hajimirsadeghi SS Supercritical fluid extraction in plant essential and volatile oil analysis. J Chromatogr A 1163: 2-24. 2007.
28.Miguel MG Antioxidant and anti-inflammatory activities of essential oils: a short review. Molecules 15: 9252-87. 2010.
29.Katsukawa M, Nakata R, Takizawa Y, et al. Citral, a component of lemongrass oil, activates PPARalpha and gamma and suppresses COX-2 expression. Biochim Biophys Acta 1801: 1214-20. 2010.
30.Carbajal D, Casaco A, Arruzazabala L, et al. Pharmacological study of Cymbopogon citratus leaves. J Ethnopharmacol 25: 103-7. 1989.
31.Figueirinha A, Cruz MT, Francisco V, et al. Anti-inflammatory activity of Cymbopogon citratus leaf infusion in lipopolysaccharide-stimulated dendritic cells: contribution of the polyphenols. J Med Food 13: 681-90. 2010.
32.Sforcin JM, Amaral JT, Fernandes A, Jr., et al. Lemongrass effects on IL-1beta and IL-6 production by macrophages. Nat Prod Res 23: 1151-9. 2009.
33.Zore GB, Thakre AD, Jadhav S, et al. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomedicine 18: 1181-90. 2011.
34.Bachiega TF and Sforcin JM Lemongrass and citral effect on cytokines production by murine macrophages. J Ethnopharmacol 137: 909-13. 2011.
35.Nakamura Y, Kano R, Murai T, et al. Susceptibility testing of Malassezia species using the urea broth microdilution method. Antimicrob Agents Chemother 44: 2185-6. 2000.
36.Chen Z, Tong L, Li Z, et al. Hyperosmolarity-induced cornification of human corneal epithelial cells is regulated by JNK MAPK. Invest Ophthalmol Vis Sci 49: 539-49. 2008.
37.Smrz D, Draberova L, and Draber P Non-apoptotic phosphatidylserine externalization induced by engagement of glycosylphosphatidylinositol-anchored proteins. J Biol Chem 282: 10487-97. 2007.
38.Phillips AJ, Sudbery I, and Ramsdale M Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc Natl Acad Sci U S A 100: 14327-32. 2003.
39.Frank Madeo SW, Markus Fehr et al A caspase related protease regulates apoptosis in yeast. Molecular Cell 9,: 911-917. 2002.
40.Rockenfeller P and Madeo F Apoptotic death of ageing yeast. Exp Gerontol 43: 876-81. 2008.
41.Oh JY, Baek YM, Kim SW, et al. Apoptosis of human hepatocarcinoma (HepG2) and neuroblastoma (SKN-SH) cells induced by polysaccharides-peptide complexes produced by submerged mycelial culture of an entomopathogenic fungus Cordyceps sphecocephala. J Microbiol Biotechnol 18: 512-9. 2008.
42.Frank Madeo EF, and Kai-Uwe Frohlich A Yeast Mutant Showing Diagnostic Markers of Early and Late Apoptosis. J Cell Biol 139: 729-734. 1997.
43.Buttner S, Eisenberg T, Herker E, et al. Why yeast cells can undergo apoptosis: death in times of peace, love, and war. J Cell Biol 175: 521-5. 2006.
44.Herker E, Jungwirth H, Lehmann KA, et al. Chronological aging leads to apoptosis in yeast. J Cell Biol 164: 501-7. 2004.
45.Carmona-Gutierrez D, Eisenberg T, Buttner S, et al. Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ 17: 763-73. 2010.
46.Cho J and Lee DG Oxidative stress by antimicrobial peptide pleurocidin triggers apoptosis in Candida albicans. Biochimie 93: 1873-9. 2011.
47.Hwang B, Hwang JS, Lee J, et al. Induction of yeast apoptosis by an antimicrobial peptide, Papiliocin. Biochem Biophys Res Commun 408: 89-93. 2011.
48.Hwang B, Hwang JS, Lee J, et al. The antimicrobial peptide, psacotheasin induces reactive oxygen species and triggers apoptosis in Candida albicans. Biochem Biophys Res Commun 405: 267-71. 2011.
49.Uren AG, O''Rourke K, Aravind LA, et al. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6: 961-7. 2000.
50.Akaza N, Akamatsu H, Takeoka S, et al. Increased hydrophobicity in Malassezia species correlates with increased proinflammatory cytokine expression in human keratinocytes. Med Mycol 50: 802-10. 2012.
51.Mittag H Fine structural investigation of Malassezia furfur. II. The envelope of the yeast cells. Mycoses 38: 13-21. 1995.
52.Baroni A. PB, Paoletti I., Ruocco E., Canozo N., Orlando M., Buommino E. Malassezia furfur invasiveness in a keratinocyte cell line (HaCat): effects on cytoskeleton and on adhesion molecule and cytokine expression. Arch Dermatol Res 293: 411-419. 2001.
53.Ishibashi Y, Sugawara K, Sugita T, et al. Secretion of thymic stromal lymphopoietin from human keratinocytes in response to Malassezia yeasts. J Dermatol Sci 62: 134-8. 2011.
54.Netea MG, Van Der Graaf CA, Vonk AG, et al. The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J Infect Dis 185: 1483-9. 2002.
55.Pivarcsi A, Bodai L, Rethi B, et al. Expression and function of Toll-like receptors 2 and 4 in human keratinocytes. Int Immunol 15: 721-30. 2003.
56.Baroni A, Orlando M, Donnarumma G, et al. Toll-like receptor 2 (TLR2) mediates intracellular signalling in human keratinocytes in response to Malassezia furfur. Arch Dermatol Res 297: 280-8. 2006.
57.Harada M, Hirota T, Jodo AI, et al. Functional analysis of the thymic stromal lymphopoietin variants in human bronchial epithelial cells. Am J Respir Cell Mol Biol 40: 368-74. 2009.
58.Harada M, Hirota T, Jodo AI, et al. Thymic stromal lymphopoietin gene promoter polymorphisms are associated with susceptibility to bronchial asthma. Am J Respir Cell Mol Biol 44: 787-93. 2011.
59.Hirota T, Takahashi A, Kubo M, et al. Genome-wide association study identifies three new susceptibility loci for adult asthma in the Japanese population. Nat Genet 43: 893-6. 2011.
60.Xie Y, Takai T, Chen X, et al. Long TSLP transcript expression and release of TSLP induced by TLR ligands and cytokines in human keratinocytes. J Dermatol Sci 66: 233-7. 2012.
61.Liu YJ Thymic stromal lymphopoietin: master switch for allergic inflammation. J Exp Med 203: 269-73. 2006.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔