(3.227.235.183) 您好!臺灣時間:2021/04/13 10:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭雅馨
研究生(外文):Ya-Hsin Cheng
論文名稱:香瓜茄水萃物對於db/db小鼠之影響
論文名稱(外文):The effect of an aqueous extract from Solanum muricatum Ait on db/db mice
指導教授:徐成金徐成金引用關係
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:營養學研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:81
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
第2型糖尿病患者血糖控制不良時,會造成全身性高血糖,而長期高血糖會促使過多的葡萄糖走向多元醇路徑來代謝,增加糖化終產物的堆積,導致組織的傷害。香瓜茄為茄科茄屬植物,台灣產地大多位於澎湖,本實驗室先前以BALB/c小鼠誘發成第2型糖尿病,已發現香瓜茄對第2型糖尿病具有延緩體內傷害及多元醇路徑之影響。因此本實驗室更進一步利用leptin receptor基因變異的db/db老鼠,觀察香瓜茄對第2型糖尿病的影響。db/db小鼠分別餵食1%和2%香瓜茄水萃物八週,取血液、肝臟、腎臟、胰臟等臟器進行實驗分析。結果顯示db/db小鼠餵食不同劑量的香瓜茄水萃物八週後,胰島素阻抗性有顯著的改善;在血脂方面,血清中cholesterol、TG、free fatty acid顯著下降,肝臟DGAT-2和副睪脂肪DGAT-1基因表現也顯著下降;在抗氧化方面,肝臟、腎臟、胰臟及坐骨神經也都有顯著上升;在多元醇路徑方面,腎臟、胰臟、紅血球及坐骨神經的多元醇路徑關鍵酵素Aldose reductase比活性和終產物Fructose的堆積有下降的情形;在發炎方面,腎臟TGF-β1基因表現量與纖維網狀蛋白含量都有減;在組織切片方面,腎臟及坐骨神經有保護作用。因此根據本研究顯示香瓜茄水萃物可降低db/db小鼠體內氧化壓力及糖化作用,進而可以延緩第2型糖尿病的併發症發生。

Solanum muricatum Ait (pepino) is a popular plant food in Penghu island, Taiwan. Our previous study has reported that the aqueous extract from pepino was able to improve antioxidant defense and polyol pathway in streptozotocin induced type 2 diabetic BALB/c mice. Therefore, we further use the leptin receptor gene mutated db/db mice to investigate the effects of pepino aqueous extract on type 2 diabetes.
Db/db mice were fed by 1 or 2% aqueous pepino for eight weeks. The serum and tissues were collected to analyze. Results showed that pepino intake improved insulin resistance and decreased resistin gene expression. This extract inhibited DGAT-2 gene expression in liver, DGAT-1 gene expression in adipose tissue, reduced lipid synthesis, lowered serum cholesterol, triglyceride and free fatty acids. In addition, this extract also reduced malondialdehyde (MDA); retained glutathione (GSH), glutathione peroxidase (GPx) in liver, kidney, pancreas and sciatic nerve, attenuated oxidative damage. The activity of aldose reductase, a key enzyme in polyol pathway, decreased in kidney, pancreas, erythrocyte and sciatic nerve. Also, the fructose and N-ε-carboxymethyl-lysine (CML) levels were lowered in these organs. On the other hand, this extract inhibited TGF-β1 gene expression and reduced fibronectin level in kidney, and decreased inflammatory stress. These results suggest that pepino aqueous extract could delay progression of type 2 diabetic complications by decreasing oxidative stress, glycosylation and inflammatory response.


目錄………………………………………………………………………………….…I
圖表目次………………………………………………………………………..……IV
中文摘要…………………………………………………………………………..…VI
英文摘要………………………………………………………………...….………VII
第一章、前言………………………………………………………………………..1
第二章、文獻探討……………………………………………………………………2
一、糖尿病簡介………………………………………………………………………2
(一)定義……………………………………………………………………………….2
(二)診斷標準………………………………………………………………………….2
(三)分類………………………………………………………………………..2
(四)症狀…………………………………………………………………………….....4
(五)併發症…………………………………………………………………………….6
二、糖尿病與氧化壓力………………………………………………………………7
三、糖尿病與多元醇路徑……………………………………………………………8
四、香瓜茄……………………………………………………………………………10
五、db/db小鼠模式…………………………………………………………………12
第三章、研究目的……………………………………………………………………14
第四章、材料與方法…………………………………………………………………15
一、實驗材料與儀器…………………………………………………………………15
(一)香瓜茄…………………………………………………………………………15
(二)實驗動物………………………………………………………………………15
(三)化學藥品………………………………………………………………………15
(四)儀器設備………………………………………………………………………17
二、實驗設計…………………………………………………………………………17
(一)香瓜茄水萃物飼料製備………………………………………………………17
(二)動物模式………………………………………………………………………18
(三)樣本收集………………………………………………………………………18
三、實驗分析方法……………………………………………………………………19
(一)血糖測定………………………………………………………………………19
(二)口服葡萄糖耐受試驗(Oral Glucose Tolerance Test) …………………………19
(三)、胰島素(Insulin)含量測定……………………………………………………20
(四)胰島素阻抗(Homeostasis Model Assessment-insulin resistance;HOMA-IR)…20
(五)總蛋白濃度測定………………………………………………………………21
(六)脂質過氧化 (Malondialdehyde,MDA)測定…………………………………21
(七)、麩胱苷肽過氧化酶(Glutathione peroxidase;GPx)比活性測定………………22
(八)醛糖還原酶(Aldose reductase;AR)比活性測定………………………………23
(九)總抗氧化能力(Trolox equivalent antioxidant capacity)測定…………………24
(十)三酸甘油酯(Triglycerides)濃度測定…………………………………………24
(十一)膽固醇(Cholesterol)濃度測定………………………………………………25
(十二)纖維網狀蛋白(Fibronectin)含量測定以西方墨點法(Western blot)………26
(十三)反轉錄聚合酶連鎖反應……………………………………………………26
(十四)麩胱甘肽(Glutathione;GSH)含量測定………………………………………29
(十五)羧甲基化離胺酸(N-ε-carboxymethyl-lysine;CML)含量測定……………30
(十六)果糖(Fructose)含量測定……………………………………………………31
(十七)游離脂肪酸(Free Fatty Acid)含量測定……………………………………31
(十八)統計分析……………………………………………………………………32
第五章、實驗結果……………………………………………………………………33
一、餵食八週1%、2%香瓜茄水萃物對於第2型糖尿病db/db小鼠生理之影響………………………………………………………………………………33
二、餵食八週1%、2%香瓜茄水萃物對於第二型糖尿病db/db小鼠血糖、胰島
素阻抗之影響…………….…………………………………………………………33
三、餵食八週1%、2%香瓜茄水萃物對於第二型糖尿病db/db小鼠體內氧化壓
力之影響……………………………………………………………………………34
四、餵食八週1%、2%香瓜茄水萃物對於第二型糖尿病db/db小鼠體內多元醇
路徑之影響…………………………………………………………………………35
五、餵食八週1%、2%香瓜茄水萃物對於第二型糖尿病db/db小鼠體內血脂與
副睪脂肪重之影響…………………………………………………………………36
六、餵食八週1%、2%香瓜茄水萃物對於第二型糖尿病db/db小鼠腎臟及坐骨神 經之影響…………………………………………….……………………………..36
第六章、討論…………………………………………………………………………66
第七章、結論…………………………………………………………………………73
第八章、參考文獻……………………………………………………………………74


1.Mahan, L.K.a.S.E.-S., Krause''s Food, Nutrition, & Diet Therapy. 12ed. 2008: p. 766.
2.Diagnosis and classification of diabetes mellitus. Diabetes Care, 2012. 35 Suppl 1: p. S64-71.
3.Achenbach, P., E. Bonifacio, K. Koczwara, and A.-G. Ziegler, Natural history of type 1 diabetes. Diabetes, 2005. 54 Suppl 2: p. S25-31.
4.Lamb, M.M., M.D. Simpson, J. Seifert, F.W. Scott, M. Rewers, and J.M. Norris, The Association between IgG4 Antibodies to Dietary Factors, Islet Autoimmunity and Type 1 Diabetes: The Diabetes Autoimmunity Study in the Young. PLoS One, 2013. 8(2): p. e57936.
5.Nokoff, N. and M. Rewers, Pathogenesis of type 1 diabetes: lessons from natural history studies of high-risk individuals. Ann N Y Acad Sci, 2013: p. 1-15.
6.Fonseca, V.A., Defining and characterizing the progression of type 2 diabetes. Diabetes Care, 2009. 32 Suppl 2: p. S151-6.
7.Giaccari, A., G. Sorice, and G. Muscogiuri, Glucose toxicity: the leading actor in the pathogenesis and clinical history of type 2 diabetes - mechanisms and potentials for treatment. Nutr Metab Cardiovasc Dis, 2009. 19(5): p. 365-77.
8.Kahn, S.E., R.L. Hull, and K.M. Utzschneider, Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 2006. 444(7121): p. 840-6.
9.Mason, C.C., R.L. Hanson, and W.C. Knowler, Progression to type 2 diabetes characterized by moderate then rapid glucose increases. Diabetes, 2007. 56(8): p. 2054-61.
10.Nolan, C.J., P. Damm, and M. Prentki, Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet, 2011. 378(9786): p. 169-81.
11.Shaw, J.E., R.A. Sicree, and P.Z. Zimmet, Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract, 2010. 87(1): p. 4-14.
12.Buchanan, T.A. and A.H. Xiang, Gestational diabetes mellitus. Journal of Clinical Investigation, 2005. 115(3): p. 485-491.
13.Gherman, R.B., Gestational diabetes mellitus. Journal of Reproductive Medicine, 1999. 44(7): p. 656.
14.Metter, E.J., B.G. Windham, M. Maggio, E.M. Simonsick, S.M. Ling, J.M. Egan, and L. Ferrucci, Glucose and insulin measurements from the oral glucose tolerance test and mortality prediction. Diabetes Care, 2008. 31(5): p. 1026-30.
15.Wolfsdorf, J., M.E. Craig, D. Daneman, D. Dunger, J. Edge, W. Lee, A. Rosenbloom, M. Sperling, and R. Hanas, Diabetic ketoacidosis in children and adolescents with diabetes. Pediatr Diabetes, 2009. 10 Suppl 12: p. 118-33.
16.Goldstein, B.J., Insulin resistance as the core defect in type 2 diabetes mellitus. American Journal of Cardiology, 2002. 90(5A): p. 3G-10G.
17.Kahn, S.E., The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia, 2003. 46(1): p. 3-19.
18.Caballero, A.E., Endothelial dysfunction in obesity and insulin resistance: a road to diabetes and heart disease. Obesity Research, 2003. 11(11): p. 1278-89.
19.Kusminski, C.M., P.G. McTernan, and S. Kumar, Role of resistin in obesity, insulin resistance and Type II diabetes. Clin Sci (Lond), 2005. 109(3): p. 243-56.
20.Lu, H.L., H.W. Wang, Y. Wen, M.X. Zhang, and H.H. Lin, Roles of adipocyte derived hormone adiponectin and resistin in insulin resistance of type 2 diabetes. World J Gastroenterol, 2006. 12(11): p. 1747-51.
21.McTernan, P.G., C.L. McTernan, R. Chetty, K. Jenner, F.M. Fisher, M.N. Lauer, J. Crocker, A.H. Barnett, and S. Kumar, Increased resistin gene and protein expression in human abdominal adipose tissue. J Clin Endocrinol Metab, 2002. 87(5): p. 2407.
22.Matthews, D.R., J.P. Hosker, A.S. Rudenski, B.A. Naylor, D.F. Treacher, and R.C. Turner, Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 1985. 28(7): p. 412-9.
23.Sun, Q., P. Yue, J.A. Deiuliis, C.N. Lumeng, T. Kampfrath, M.B. Mikolaj, Y. Cai, M.C. Ostrowski, B. Lu, S. Parthasarathy, R.D. Brook, S.D. Moffatt-Bruce, L.C. Chen, and S. Rajagopalan, Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity. Circulation, 2009. 119(4): p. 538-46.
24.Lewis, G.F., A. Carpentier, K. Adeli, and A. Giacca, Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocrine Reviews, 2002. 23(2): p. 201-29.
25.Lu, W., H.E. Resnick, K.A. Jablonski, K.L. Jones, A.K. Jain, W.J. Howard, D.C. Robbins, and B.V. Howard, Non-HDL cholesterol as a predictor of cardiovascular disease in type 2 diabetes: the strong heart study. Diabetes Care, 2003. 26(1): p. 16-23.
26.Basta, G., A.M. Schmidt, and R. De Caterina, Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res, 2004. 63(4): p. 582-92.
27.Kilhovd, B.K., T.J. Berg, K.I. Birkeland, P. Thorsby, and K.F. Hanssen, Serum levels of advanced glycation end products are increased in patients with type 2 diabetes and coronary heart disease. Diabetes Care, 1999. 22(9): p. 1543-8.
28.Stirban, A., M. Negrean, B. Stratmann, T. Gawlowski, T. Horstmann, C. Gotting, K. Kleesiek, M. Mueller-Roesel, T. Koschinsky, J. Uribarri, H. Vlassara, and D. Tschoepe, Benfotiamine prevents macro- and microvascular endothelial dysfunction and oxidative stress following a meal rich in advanced glycation end products in individuals with type 2 diabetes. Diabetes Care, 2006. 29(9): p. 2064-71.
29.Boden, G., Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes, 1997. 46(1): p. 3-10.
30.Huebschmann, A.G., J.G. Regensteiner, H. Vlassara, and J.E. Reusch, Diabetes and advanced glycoxidation end products. Diabetes Care, 2006. 29(6): p. 1420-32.
31.Aronson, D., Hyperglycemia and the pathobiology of diabetic complications. Advances in Cardiology, 2008. 45: p. 1-16.
32.Huang, E.S., J.B. Meigs, and D.E. Singer, The effect of interventions to prevent cardiovascular disease in patients with type 2 diabetes mellitus. American Journal of Medicine, 2001. 111(8): p. 633-42.
33.Laakso, M., Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes, 1999. 48(5): p. 937-42.
34.Stratton, I.M., A.I. Adler, H.A. Neil, D.R. Matthews, S.E. Manley, C.A. Cull, D. Hadden, R.C. Turner, and R.R. Holman, Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ, 2000. 321(7258): p. 405-12.
35.Duby, J.J., R.K. Campbell, S.M. Setter, J.R. White, and K.A. Rasmussen, Diabetic neuropathy: an intensive review. American Journal of Health-System Pharmacy, 2004. 61(2): p. 160-73; quiz 175-6.
36.Kikkawa, R., D. Koya, and M. Haneda, Progression of diabetic nephropathy. Am J Kidney Dis, 2003. 41(3 Suppl 1): p. S19-21.
37.Taylor, R.H., H.S. Jones, P.M. Dodson, A.P. Hamilton, and E.E. Kritzinger, Diabetic eye disease: a natural history study. Eye (Lond), 1997. 11 ( Pt 4): p. 547-53.
38.Machlin, L.J. and A. Bendich, Free radical tissue damage: protective role of antioxidant nutrients. FASEB J, 1987. 1(6): p. 441-5.
39.Valko, M., M. Izakovic, M. Mazur, C.J. Rhodes, and J. Telser, Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem, 2004. 266(1-2): p. 37-56.
40.Valko, M., D. Leibfritz, J. Moncol, M.T. Cronin, M. Mazur, and J. Telser, Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol, 2007. 39(1): p. 44-84.
41.Maritim, A.C., R.A. Sanders, and J.B. Watkins, 3rd, Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol, 2003. 17(1): p. 24-38.
42.Zubkova, E.V. and B. Robaire, Effect of glutathione depletion on antioxidant enzymes in the epididymis, seminal vesicles, and liver and on spermatozoa motility in the aging brown Norway rat. Biol Reprod, 2004. 71(3): p. 1002-8.
43.Son, S.M., M.K. Whalin, D.G. Harrison, W.R. Taylor, and K.K. Griendling, Oxidative stress and diabetic vascular complications. Current Diabetes Reports, 2004. 4(4): p. 247-52.
44.Monnier, L., E. Mas, C. Ginet, F. Michel, L. Villon, J.-P. Cristol, and C. Colette, Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA, 2006. 295(14): p. 1681-7.
45.Baynes, J.W. and S.R. Thorpe, Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes, 1999. 48(1): p. 1-9.
46.West, I.C., Radicals and oxidative stress in diabetes. Diabet Med, 2000. 17(3): p. 171-80.
47.Asano, T., Y. Saito, M. Kawakami, and N. Yamada, Fidarestat (SNK-860), a potent aldose reductase inhibitor, normalizes the elevated sorbitol accumulation in erythrocytes of diabetic patients. J Diabetes Complications, 2002. 16(2): p. 133-8.
48.Brownlee, M., The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 2005. 54(6): p. 1615-25.
49.Chung, S.S.M., Contribution of Polyol Pathway to Diabetes-Induced Oxidative Stress. Journal of the American Society of Nephrology, 2003. 14(90003): p. 233S-236.
50.Dvornik, D., Aldose reductase inhibition an approach to the prevention of diabetic complications. 1987: McGraw-Hill.
51.Mizuno, K., N. Kato, M. Makino, T. Suzuki, and M. Shindo, Continuous inhibition of excessive polyol pathway flux in peripheral nerves by aldose reductase inhibitor fidarestat leads to improvement of diabetic neuropathy. Journal of Diabetes & its Complications, 1999. 13(3): p. 141-50.
52.Dunlop, M., Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney International - Supplement, 2000. 77: p. S3-12.
53.Hamada, Y., J. Nakamura, K. Naruse, T. Komori, K. Kato, Y. Kasuya, R. Nagai, S. Horiuchi, and N. Hotta, Epalrestat, an aldose reductase ihibitor, reduces the levels of Nepsilon-(carboxymethyl)lysine protein adducts and their precursors in erythrocytes from diabetic patients. Diabetes Care, 2000. 23(10): p. 1539-44.
54.Heidland, A., K. Sebekova, and R. Schinzel, Advanced glycation end products and the progressive course of renal disease. Am J Kidney Dis, 2001. 38(4 Suppl 1): p. S100-6.
55.Hotta, N., Y. Akanuma, R. Kawamori, K. Matsuoka, Y. Oka, M. Shichiri, T. Toyota, M. Nakashima, I. Yoshimura, N. Sakamoto, and Y. Shigeta, Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy: the 3-year, multicenter, comparative Aldose Reductase Inhibitor-Diabetes Complications Trial. Diabetes Care, 2006. 29(7): p. 1538-44.
56.Iso, K., H. Tada, K. Kuboki, and T. Inokuchi, Long-term effect of epalrestat, an aldose reductase inhibitor, on the development of incipient diabetic nephropathy in Type 2 diabetic patients. J Diabetes Complications, 2001. 15(5): p. 241-4.
57.Kawai, T., I. Takei, M. Tokui, O. Funae, K. Miyamoto, M. Tabata, T. Hirata, T. Saruta, A. Shimada, and H. Itoh, Effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy in patients with type 2 diabetes, in relation to suppression of N(varepsilon)-carboxymethyl lysine. J Diabetes Complications, 2010. 24(6): p. 424-32.
58.Morrisey, K., R. Steadman, J.D. Williams, and A.O. Phillips, Renal proximal tubular cell fibronectin accumulation in response to glucose is polyol pathway dependent. Kidney Int, 1999. 55(6): p. 2548-72.
59.張建和, 香瓜茄、人蔘果的營養成分分析研究. 廣東微量元素科學, 2007. 14(3): p. 48-51.
60.韓青梅, 整枝與施肥對澎湖地區香瓜茄產量及品質之影響. 高雄區農改場研究會報, 2002. 14(1): p. 22-30.
61.黃涵, 台灣蔬菜彩色圖說. 台大園藝系編印, 1992: p. 158.
62.劉蓁蓁, 香瓜茄. 園藝科學術語, 1998: p. 267.
63.Ren, W. and D.G. Tang, Extract of Solanum muricatum (Pepino/CSG) inhibits tumor growth by inducing apoptosis. Anticancer Res, 1999. 19(1A): p. 403-8.
64.Hsu, C.C., Y.R. Guo, Z.H. Wang, and M.C. Yin, Protective effects of an aqueous extract from pepino (Solanum muricatum Ait.) in diabetic mice. J Sci Food Agric, 2011. 91(8): p. 1517-22.
65.郭育儒, 香瓜茄對於以STZ誘發第一型糖尿病小鼠之影響,中山醫學大學營養學研究所學位論文2009, 中山醫學大學. p. 1-79.
66.范杏如, 香瓜茄萃取物對於以STZ誘發第2型糖尿病小鼠之影響,中山醫學大學營養學研究所學位論文2010, 中山醫學大學. p. 1-73.
67.巫玫靜, 香瓜茄水萃物對於STZ誘發第2型糖尿病與LPS誘發發炎反應的動物模式之影響,中山醫學大學營養學系碩士班學位論文2011, 中山醫學大學. p. 1-67.
68.林美紅, 香瓜茄水萃物對於STZ誘發糖尿病小鼠紅血球與坐骨神經多元醇路徑之影響,中山醫學大學營養學研究所學位論文2012, 中山醫學大學. p. 1-68.
69.陳意湘, 高糖環境下INS-1細胞添加香瓜茄水萃物之影響,中山醫學大學營養學研究所學位論文2012, 中山醫學大學. p. 1-64.
70.Chen, H., O. Charlat, L.A. Tartaglia, E.A. Woolf, X. Weng, S.J. Ellis, N.D. Lakey, J. Culpepper, K.J. Moore, R.E. Breitbart, G.M. Duyk, R.I. Tepper, and J.P. Morgenstern, Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell, 1996. 84(3): p. 491-5.
71.Lee, G.H., R. Proenca, J.M. Montez, K.M. Carroll, J.G. Darvishzadeh, J.I. Lee, and J.M. Friedman, Abnormal splicing of the leptin receptor in diabetic mice. Nature, 1996. 379(6566): p. 632-5.
72.Clarisse Duval, P.G., Daniel Provost and Martine Lemaire, Characterization of diabetic db/db mice. Porsolt.
73.Kobayashi, K., T.M. Forte, S. Taniguchi, B.Y. Ishida, K. Oka, and L. Chan, The db/db mouse, a model for diabetic dyslipidemia: molecular characterization and effects of Western diet feeding. Metabolism, 2000. 49(1): p. 22-31.
74.Li, J., T. Liu, L. Wang, X. Guo, T. Xu, L. Wu, L. Qin, and W. Sun, Antihyperglycemic and antihyperlipidemic action of cinnamaldehyde in C57BLKS/J db/db mice. J Tradit Chin Med, 2012. 32(3): p. 446-52.
75.Kodama, H., M. Fujita, and I. Yamaguchi, Development of hyperglycaemia and insulin resistance in conscious genetically diabetic (C57BL/KsJ-db/db) mice. Diabetologia, 1994. 37(8): p. 739-44.
76.Sharma, K., P. McCue, and S.R. Dunn, Diabetic kidney disease in the db/db mouse. Am J Physiol Renal Physiol, 2003. 284(6): p. F1138-44.
77.Xie, P., L. Sun, P.J. Oates, S.K. Srivastava, and Y.S. Kanwar, Pathobiology of renal-specific oxidoreductase/myo-inositol oxygenase in diabetic nephropathy: its implications in tubulointerstitial fibrosis. Am J Physiol Renal Physiol, 2010. 298(6): p. F1393-404.
78.Llewelyn, J.G., P.K. Thomas, and D.J. Mirrlees, Aldose reductase activity and myo-inositol levels in sciatic nerve and dorsal root ganglia of the diabetic mutant mouse [C57/BL/Ks (db/db)]. Metabolism, 1991. 40(10): p. 1084-7.
79.Andrikopoulos, S., A.R. Blair, N. Deluca, B.C. Fam, and J. Proietto, Evaluating the glucose tolerance test in mice. Am J Physiol Endocrinol Metab, 2008. 295(6): p. E1323-32.
80.Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall, Protein measurement with the Folin phenol reagent. J Biol Chem, 1951. 193(1): p. 265-75.
81.Ohkawa, H., N. Ohishi, and K. Yagi, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem, 1979. 95(2): p. 351-8.
82.Gui, T., T. Tanimoto, Y. Kokai, and C. Nishimura, Presence of a closely related subgroup in the aldo-ketoreductase family of the mouse. Eur J Biochem, 1995. 227(1-2): p. 448-53.
83.Eyer, P. and D. Podhradsky, Evaluation of the micromethod for determination of glutathione using enzymatic cycling and Ellman''s reagent. Anal Biochem, 1986. 153(1): p. 57-66.
84.Weyer, C., C. Bogardus, D.M. Mott, and R.E. Pratley, The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. Journal of Clinical Investigation, 1999. 104(6): p. 787-94.
85.Juan, C.C., L.C. Au, V.S. Fang, S.F. Kang, Y.H. Ko, S.F. Kuo, Y.P. Hsu, C.F. Kwok, and L.T. Ho, Suppressed gene expression of adipocyte resistin in an insulin-resistant rat model probably by elevated free fatty acids. Biochem Biophys Res Commun, 2001. 289(5): p. 1328-33.
86.Park, S., S.M. Hong, S.R. Sung, and H.K. Jung, Long-term effects of central leptin and resistin on body weight, insulin resistance, and beta-cell function and mass by the modulation of hypothalamic leptin and insulin signaling. Endocrinology, 2008. 149(2): p. 445-54.
87.Sandoval, D.A. and S.N. Davis, Leptin: metabolic control and regulation. J Diabetes Complications, 2003. 17(2): p. 108-13.
88.Chung, S.S., E.C. Ho, K.S. Lam, and S.K. Chung, Contribution of polyol pathway to diabetes-induced oxidative stress. J Am Soc Nephrol, 2003. 14(8 Suppl 3): p. S233-6.
89.Hotta, N., R. Kawamori, M. Fukuda, and Y. Shigeta, Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on progression of diabetic neuropathy and other microvascular complications: multivariate epidemiological analysis based on patient background factors and severity of diabetic neuropathy. Diabet Med, 2012. 29(12): p. 1529-33.
90.Boden, G. and G.I. Shulman, Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. European Journal of Clinical Investigation, 2002. 32 Suppl 3: p. 14-23.
91.Folch, J., M. Lees, and G.H. Sloane Stanley, A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem, 1957. 226(1): p. 497-509.
92.Shi, Y. and D. Cheng, Beyond triglyceride synthesis: the dynamic functional roles of MGAT and DGAT enzymes in energy metabolism. Am J Physiol Endocrinol Metab, 2009. 297(1): p. E10-8.
93.Isono, M., S. Chen, S.W. Hong, M.C. Iglesias-de la Cruz, and F.N. Ziyadeh, Smad pathway is activated in the diabetic mouse kidney and Smad3 mediates TGF-beta-induced fibronectin in mesangial cells. Biochem Biophys Res Commun, 2002. 296(5): p. 1356-65.
94.Sharma, K., Y. Jin, J. Guo, and F.N. Ziyadeh, Neutralization of TGF-beta by anti-TGF-beta antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes, 1996. 45(4): p. 522-30.
95.German, J.P., B.E. Wisse, J.P. Thaler, I.S. Oh, D.A. Sarruf, K. Ogimoto, K.J. Kaiyala, J.D. Fischer, M.E. Matsen, G.J. Taborsky, Jr., M.W. Schwartz, and G.J. Morton, Leptin deficiency causes insulin resistance induced by uncontrolled diabetes. Diabetes, 2010. 59(7): p. 1626-34.
96.Sindelar, D.K., P.J. Havel, R.J. Seeley, C.W. Wilkinson, S.C. Woods, and M.W. Schwartz, Low plasma leptin levels contribute to diabetic hyperphagia in rats. Diabetes, 1999. 48(6): p. 1275-80.
97.Sharma, A.K., S. Bharti, R. Kumar, B. Krishnamurthy, J. Bhatia, S. Kumari, and D.S. Arya, Syzygium cumini ameliorates insulin resistance and beta-cell dysfunction via modulation of PPAR, dyslipidemia, oxidative stress, and TNF-alpha in type 2 diabetic rats. J Pharmacol Sci, 2012. 119(3): p. 205-13.
98.Drucker, D.J., Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care, 2003. 26(10): p. 2929-40.
99.Holst, J.J. and J. Gromada, Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am J Physiol Endocrinol Metab, 2004. 287(2): p. E199-206.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔