跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/24 04:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林艾璇
研究生(外文):Ai-Hsuan Lin
論文名稱:甲硫胺酸限制上調π屬麩胱甘肽硫轉移酶表現之機制探討
論文名稱(外文):Regulating Mechanisms Involved in L-Methionine Restriction-Induced π Class of Glutathione S-Transferase Expression
指導教授:李宗貴劉承慈
指導教授(外文):Chong-Kuei LiiCheng-Tzu Liu
學位類別:博士
校院名稱:中山醫學大學
系所名稱:營養學研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:116
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
胺基酸的角色被認為主要是參與代謝,例如,做為蛋白質生合成的原料或神經傳導物質的先質、修補體組織、或提供能量等,對生物體正常生理功能的維持有著重要角色。當必需胺基酸供應短缺,促使生物體改變許多基因表達,影響生理功能,有助於生物體適應胺基酸或蛋白質營養狀態的改變。但目前為止,對於調控胺基酸依賴型基因的表現,了解仍相當有限。先前研究發現:大鼠初代肝細胞培養於低濃度甲硫胺酸環境,其π屬麩胱甘肽硫轉移酶(π class of glutathione S-transferase, GSTP)蛋白質表現會受到誘發。本研究欲探討限制甲硫胺酸如何上調GSTP表現的分子機制。
初代肝細胞取自雄性Sprague-Dawley大鼠,培養於L-15培養液(500 μM L-methionine)或限制甲硫胺酸(20 μM L-methionine)的L-15培養液。限制甲硫胺酸隨著時間增加而誘發GSTP mRNA和蛋白質表現,並且伴隨ROS產生及胞內麩胱甘肽(GSH)減少。檢查上游訊號分子結果顯示:限制甲硫胺酸促進ERK磷酸化、增加細胞核內轉錄因子Nrf2蛋白質量、誘發antioxidant response element(ARE)報導基因活性。由於GSTP 啟動區含有一重要活化序列(GSTP enhancer I, GPEI)與ARE相似,因此進一步利用Electromobility gel shift assay (EMSA) 和 Chromatin immunoprecipitation (ChIP) 分析限制甲硫胺酸條件下,細胞核內Nrf2 與GPEI結合情況,結果發現:限制甲硫胺酸的確增加Nrf2 與 GPEI結合;若以small interfering RNA 靜默ERK2,不但減少Nrf2 轉移至細胞核內及ARE報導基因活性,同時也降低限制甲硫胺酸所誘發的GSTP表現。轉殖含有GPEI序列或是含有GSTP啟動區2713 bp序列的報導基因質體,更進一步證實限制甲硫胺酸透過活化ERK2,增加Nrf2結合至GPEI上調GSTP轉錄活性。
另外,以轉錄抑制劑actinomycin D預處理大鼠初代肝細胞,致使蛋白質誘發程度減低,但仍觀察到限制甲硫胺酸而上調GSTP蛋白質表現,這暗示著可能有轉錄後調控作用參與其中。限制甲硫胺酸會增加mTORC1活化及p70S6K、eIF4A1、eIF4E、eIF4G磷酸化;預處理mTOR抑制劑PP242抑制mTORC1也抑制限制甲硫胺酸所誘發的GSTP表現。限制甲硫胺酸也降低了PP2A活性並增加磷酸化eIF4E與GSTP mRNA 3’UTR 結合。檢視mTOR上游訊號分子發現:限制甲硫胺酸增加ERK及Akt (T308) 磷酸化。以siRNA 抑制ERK2表現,便無法觀察到限制甲硫胺酸所誘發的mTOR活化及GSTP表現;但以siRNA或抑制劑LY294002抑制PI3K 則不影響mTOR磷酸化,反而更加強了GSTP蛋白質表現。已知PI3K/Akt 透過磷酸化FOXO1使之出核而抑制其轉錄活性,我們觀察到限制甲硫胺酸會減少Akt (S473) 磷酸化並且增加細胞核內FOXO1蛋白質含量、上調錳型超氧化物歧化酶和過氧化氫酶蛋白質表現。FOXO1 siRNA會降低限制甲硫氨酸所誘發的GSTP蛋白質表現;PI3K siRNA則增強FOXO1留滯於細胞核,並增加DBE報導基因表現。染色質免疫沉澱進一步證實FOXO1結合於GSTP啟動區。
以上結果證明,限制甲硫胺酸上調GSTP基因表現與GSH耗竭引起氧化壓力有關,限制甲硫胺酸透過ERK-Nrf2及PI3K-Akt-FOXO訊號路徑增加GSTP轉錄作用;或是透過ERK-mTOR-eIF4E 增加GSTP蛋白質表現。由於GSTP參與藥物代謝反應,也在不正常增生細胞中大量表現影響藥物治療的效果,因此瞭解限制甲硫胺酸上調GSTP之調控機制可提供作為營養介入的參考。

Amino acids function as multiple roles including gluconeogenic substrates, protein turnover regulators, precursor of neurotransmitters or energy fuels. As amino acid supply is short, organisms have to change several physiological functions by regulating numerous gene expression, which help them adapting to amino acid limitation. But the molecular mechanisms involved in the amino acid-dependent gene expression remain need to be further investigated. L-Methionine, a sulfur-containing essential amino acid, acts as a methyl donor in the methylation of DNA and proteins and is a precursor of L-cysteine. Previous study showed the hepatic π class of glutathione S-transferase (GSTP) is up-regulated by L-methionine restriction. This study investigated the mechanism by which L-methionine restriction modulates the expression of the GSTP, an inducible phase II detoxification enzyme, in primary rat hepatocytes.
Hepatocytes isolated from male Sprague-Dawley rat were cultured in an L-15-based medium or in a L-methionine-restricted L-15 medium supplemented with 20 μM L-methionine up to 48 h. L-methionine restriction time-dependently induced GSTP mRNA and protein expression accompanied by ROS production and a decrease in the cellular glutathione (GSH) level. The phosphorylation of ERK, but not of JNK and p38, was stimulated by L-methionine restriction. Nrf2 translocation to the nucleus and antioxidant response element (ARE)-luciferase reporter activity were increased by L-methionine restriction. Electromobility gel shift assay and Chromatin immunoprecipitation assay confirmed that nuclear factor erythroid 2-related factor 2 (Nrf2) bound to the enhancer I of GSTP (GPEI) in cells exposed to L-methionine restriction. ERK2 siRNA abolished L-methionine restriction-induced Nrf2 nuclear translocation, GPEI binding activity, ARE-luciferase reporter activity, and GSTP expression.
In the second part, in the presence of actinomycin D, L-methionine restriction-increased GSTP protein was partially suppressed, although mRNA was almost abolished. L-methionine restriction increased mTORC1 activation and p70S6K, eIF4A1, eIF4E, and eIF4G phosphorylation. mTOR inhibitor PP242 abrogated L-methionine restriction-induced mTOR activation and GSTP induction. L-Methionine restriction suppressed protein phosphatase 2A activity and increased phosphorylated eIF4E binding to the 3’ untranslated region of GSTP mRNA. Knockdown of ERK2, but not of PI3K, attenuated L-methionine restriction-induced mTOR activation and GSTP expression. L-Methionine restriction increased FOXO1 nuclear accumulation and up-regulated expression of FOXO1 target genes, manganese superoxide dismutase and catalase. GSTP induction by L-methionine restriction was partially attenuated by silencing FOXO1. Moreover, PI3K siRNA enhanced FOXO1 nuclear retention and daf-16 family protein-binding element reporter activity. Chromatin immunoprecipitation revealed that L-methionine restriction increased the binding of FOXO1 to the GSTP promoter.
Taken together, results suggest that the regulation of GSTP gene by L-methionine restriction is related to oxidative stress initiated GSH depletion and via the ERK-mTOR-eIF4E and ERK-Nrf2/ PI3K-Akt-FOXO1 signaling pathways, which contributes to the stabilization of GSTP mRNA and up-regulation of GSTP transcription, respectively.

Abbreviations ……………………………………………………………… 2
中文摘要 …………………………………………………………………… 4
Abstract……………………………………………………………………… 6
General introduction ………………………………………………………8
Specific aims ………………………………………………………………28
Chapter Ⅰ
Activation of Nrf2 Is Required for Up-Regulation of the π Class of Glutathione S-Transferase in Rat Primary Hepatocytes with L-Methionine Starvation
Journal of Agricultural and Food Chemistry 60, 6537-6545 …………………………………………………………………………………39
Chapter Ⅱ
L-Methionine Restriction Up-Regulates the π Class of Glutathione S-Transferase Expression Through Transcription and Post-Transcription Stages …………………………………………72
Conclusion …………………………………………………………………110
Appendix Ⅰ…………………………………………………………………111
Appendix Ⅱ…………………………………………………………………113
Appendix Ⅲ…………………………………………………………………114
個人資料表 …………………………………………………………………115

1.Jousse C, Bruhat A, Ferrara M, Fafournoux P. Evidence for multiple signaling pathways in the regulation of gene expression by amino acids in human cell lines. The Journal of nutrition. 2000;130:1555-60.
2.Kurpad AV, Regan MM, Varalakshmi S, Vasudevan J, Gnanou J, Raj T, Young VR. Daily methionine requirements of healthy Indian men, measured by a 24-h indicator amino acid oxidation and balance technique. The American journal of clinical nutrition. 2003;77:1198-205.
3.Ely B, Pittard J. Aromatic amino acid biosynthesis: regulation of shikimate kinase in Escherichia coli K-12. Journal of bacteriology. 1979;138:933-43.
4.Dever TE, Feng L, Wek RC, Cigan AM, Donahue TF, Hinnebusch AG. Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell. 1992;68:585-96.
5.Hinnebusch AG. The eIF-2 alpha kinases: regulators of protein synthesis in starvation and stress. Seminars in cell biology. 1994;5:417-26.
6.Dever TE, Hinnebusch AG. GCN2 whets the appetite for amino acids. Molecular cell. 2005;18:141-2.
7.Hinnebusch AG, Natarajan K. Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryotic cell. 2002;1:22-32.
8.Hinnebusch AG. Translational regulation of GCN4 and the general amino acid control of yeast. Annual review of microbiology. 2005;59:407-50.
9.Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ. Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Molecular and cellular biology. 2001;21:4347-68.
10.Averous J, Bruhat A, Mordier S, Fafournoux P. Recent advances in the understanding of amino acid regulation of gene expression. The Journal of nutrition. 2003;133:2040S-5S.
11.Ait Ghezala H, Jolles B, Salhi S, Castrillo K, Carpentier W, Cagnard N, Bruhat A, Fafournoux P, Jean-Jean O. Translation termination efficiency modulates ATF4 response by regulating ATF4 mRNA translation at 5'' short ORFs. Nucleic acids research. 2012;40:9557-70.
12.Averous J, Bruhat A, Jousse C, Carraro V, Thiel G, Fafournoux P. Induction of CHOP expression by amino acid limitation requires both ATF4 expression and ATF2 phosphorylation. The Journal of biological chemistry. 2004;279:5288-97.
13.Jousse C, Deval C, Maurin AC, Parry L, Cherasse Y, Chaveroux C, Lefloch R, Lenormand P, Bruhat A, Fafournoux P. TRB3 inhibits the transcriptional activation of stress-regulated genes by a negative feedback on the ATF4 pathway. The Journal of biological chemistry. 2007;282:15851-61.
14.Gaccioli F, Huang CC, Wang C, Bevilacqua E, Franchi-Gazzola R, Gazzola GC, Bussolati O, Snider MD, Hatzoglou M. Amino acid starvation induces the SNAT2 neutral amino acid transporter by a mechanism that involves eukaryotic initiation factor 2alpha phosphorylation and cap-independent translation. The Journal of biological chemistry. 2006;281:17929-40.
15.Pohjanpelto P, Holtta E. Deprivation of a single amino acid induces protein synthesis-dependent increases in c-jun, c-myc, and ornithine decarboxylase mRNAs in Chinese hamster ovary cells. Molecular and cellular biology. 1990;10:5814-21.
16.Cherasse Y, Chaveroux C, Jousse C, Maurin AC, Carraro V, Parry L, Fafournoux P, Bruhat A. Role of the repressor JDP2 in the amino acid-regulated transcription of CHOP. FEBS letters. 2008;582:1537-41.
17.Mine Y, Kim CJ. Nonnutrient Functionality of Amino Acids. Nutrigenomics and Proteomics in Health and Disease: Wiley-Blackwell; 2009. p. 115-27.
18.Jousse C, Bruhat A, Carraro V, Urano F, Ferrara M, Ron D, Fafournoux P. Inhibition of CHOP translation by a peptide encoded by an open reading frame localized in the chop 5''UTR. Nucleic acids research. 2001;29:4341-51.
19.Jousse C, Bruhat A, Harding HP, Ferrara M, Ron D, Fafournoux P. Amino acid limitation regulates CHOP expression through a specific pathway independent of the unfolded protein response. FEBS letters. 1999;448:211-6.
20.Abcouwer SF, Schwarz C, Meguid RA. Glutamine deprivation induces the expression of GADD45 and GADD153 primarily by mRNA stabilization. The Journal of biological chemistry. 1999;274:28645-51.
21.Bruhat A, Jousse C, Carraro V, Reimold AM, Ferrara M, Fafournoux P. Amino acids control mammalian gene transcription: activating transcription factor 2 is essential for the amino acid responsiveness of the CHOP promoter. Molecular and cellular biology. 2000;20:7192-204.
22.Cherasse Y, Maurin AC, Chaveroux C, Jousse C, Carraro V, Parry L, Deval C, Chambon C, Fafournoux P, Bruhat A. The p300/CBP-associated factor (PCAF) is a cofactor of ATF4 for amino acid-regulated transcription of CHOP. Nucleic acids research. 2007;35:5954-65.
23.Bruhat A, Cherasse Y, Maurin AC, Breitwieser W, Parry L, Deval C, Jones N, Jousse C, Fafournoux P. ATF2 is required for amino acid-regulated transcription by orchestrating specific histone acetylation. Nucleic acids research. 2007;35:1312-21.
24.Barbosa-Tessmann IP, Chen C, Zhong C, Siu F, Schuster SM, Nick HS, Kilberg MS. Activation of the human asparagine synthetase gene by the amino acid response and the endoplasmic reticulum stress response pathways occurs by common genomic elements. The Journal of biological chemistry. 2000;275:26976-85.
25.Chen H, Pan YX, Dudenhausen EE, Kilberg MS. Amino acid deprivation induces the transcription rate of the human asparagine synthetase gene through a timed program of expression and promoter binding of nutrient-responsive basic region/leucine zipper transcription factors as well as localized histone acetylation. The Journal of biological chemistry. 2004;279:50829-39.
26.Bruhat A, Averous J, Carraro V, Zhong C, Reimold AM, Kilberg MS, Fafournoux P. Differences in the molecular mechanisms involved in the transcriptional activation of the CHOP and asparagine synthetase genes in response to amino acid deprivation or activation of the unfolded protein response. The Journal of biological chemistry. 2002;277:48107-14.
27.Fafournoux P, Bruhat A, Jousse C. Amino acid regulation of gene expression. The Biochemical journal. 2000;351:1-12.
28.Gong SS, Guerrini L, Basilico C. Regulation of asparagine synthetase gene expression by amino acid starvation. Molecular and cellular biology. 1991;11:6059-66.
29.Hutson RG, Kilberg MS. Cloning of rat asparagine synthetase and specificity of the amino acid-dependent control of its mRNA content. The Biochemical journal. 1994;304 ( Pt 3):745-50.
30.Wang XZ, Lawson B, Brewer JW, Zinszner H, Sanjay A, Mi LJ, Boorstein R, Kreibich G, Hendershot LM, Ron D. Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Molecular and cellular biology. 1996;16:4273-80.
31.Cho MK, Kim YG, Lee MG, Kim SG. The effect of cysteine on the altered expression of class alpha and mu glutathione S-transferase genes in the rat liver during protein-calorie malnutrition. Biochimica et biophysica acta. 2000;1502:235-46.
32.Ronchi VP, Conde RD, Guillemot JC, Sanllorenti PM. The mouse liver content of carbonic anhydrase III and glutathione S-tranferases A3 and P1 depend on dietary supply of methionine and cysteine. The international journal of biochemistry & cell biology. 2004;36:1993-2004.
33.Tsai CW, Chen HW, Yang JJ, Liu KL, Lii CK. Sulfur amino acid restriction induces the pi class of glutathione S-transferase expression in primary rat hepatocytes. The Journal of nutrition. 2005;135:1034-9.
34.Martinez-Chantar ML, Latasa MU, Varela-Rey M, Lu SC, Garcia-Trevijano ER, Mato JM, Avila MA. L-methionine availability regulates expression of the methionine adenosyltransferase 2A gene in human hepatocarcinoma cells: role of S-adenosylmethionine. The Journal of biological chemistry. 2003;278:19885-90.
35.Pan YX, Chen H, Kilberg MS. Interaction of RNA-binding proteins HuR and AUF1 with the human ATF3 mRNA 3''-untranslated region regulates its amino acid limitation-induced stabilization. The Journal of biological chemistry. 2005;280:34609-16.
36.Lopez AB, Wang C, Huang CC, Yaman I, Li Y, Chakravarty K, Johnson PF, Chiang CM, Snider MD, et al. A feedback transcriptional mechanism controls the level of the arginine/lysine transporter cat-1 during amino acid starvation. The Biochemical journal. 2007;402:163-73.
37.Jefferson LS, Kimball SR. Amino acids as regulators of gene expression at the level of mRNA translation. The Journal of nutrition. 2003;133:2046S-51S.
38.Everson WV, Flaim KE, Susco DM, Kimball SR, Jefferson LS. Effect of amino acid deprivation on initiation of protein synthesis in rat hepatocytes. The American journal of physiology. 1989;256:C18-27.
39.Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. The Journal of biological chemistry. 1998;273:14484-94.
40.Kimball SR, Jefferson LS. Molecular mechanisms through which amino acids mediate signaling through the mammalian target of rapamycin. Current opinion in clinical nutrition and metabolic care. 2004;7:39-44.
41.Avruch J, Long X, Ortiz-Vega S, Rapley J, Papageorgiou A, Dai N. Amino acid regulation of TOR complex 1. American journal of physiology. 2009;296:E592-602.
42.Huang J, Manning BD. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. The Biochemical journal. 2008;412:179-90.
43.Bhaskar PT, Hay N. The two TORCs and Akt. Developmental cell. 2007;12:487-502.
44.Foster KG, Fingar DC. Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. The Journal of biological chemistry. 2010;285:14071-7.
45.Populo H, Lopes JM, Soares P. The mTOR Signalling Pathway in Human Cancer. International journal of molecular sciences. 2012;13:1886-918.
46.Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124:471-84.
47.Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends in biochemical sciences. 2011;36:320-8.
48.Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Molecular cell. 2010;40:310-22.
49.Carriere A, Cargnello M, Julien LA, Gao H, Bonneil E, Thibault P, Roux PP. Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation. Curr Biol. 2008;18:1269-77.
50.Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. 2009;136:521-34.
51.Murgas Torrazza R, Suryawan A, Gazzaneo MC, Orellana RA, Frank JW, Nguyen HV, Fiorotto ML, El-Kadi S, Davis TA. Leucine supplementation of a low-protein meal increases skeletal muscle and visceral tissue protein synthesis in neonatal pigs by stimulating mTOR-dependent translation initiation. The Journal of nutrition. 2010;140:2145-52.
52.Appuhamy JA, Knoebel NA, Nayananjalie WA, Escobar J, Hanigan MD. Isoleucine and leucine independently regulate mTOR signaling and protein synthesis in MAC-T cells and bovine mammary tissue slices. The Journal of nutrition. 2012;142:484-91.
53.Zhao C, Yasumura D, Li X, Matthes M, Lloyd M, Nielsen G, Ahern K, Snyder M, Bok D, et al. mTOR-mediated dedifferentiation of the retinal pigment epithelium initiates photoreceptor degeneration in mice. The Journal of clinical investigation. 2011;121:369-83.
54.Peterson RT, Desai BN, Hardwick JS, Schreiber SL. Protein phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12-rapamycinassociated protein. Proceedings of the National Academy of Sciences of the United States of America. 1999;96:4438-42.
55.Janssens V, Goris J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. The Biochemical journal. 2001;353:417-39.
56.Yan L, Mieulet V, Burgess D, Findlay GM, Sully K, Procter J, Goris J, Janssens V, Morrice NA, Lamb RF. PP2A T61 epsilon is an inhibitor of MAP4K3 in nutrient signaling to mTOR. Molecular cell. 2010;37:633-42.
57.Kim J, Guan KL. Amino acid signaling in TOR activation. Annual review of biochemistry. 2011;80:1001-32.
58.Selvaraj A, Thomas G. Phosphatase 2A puts the brakes on mTORC1 nutrient signaling. Cell metabolism. 2010;11:245-7.
59.Lee J, Chen Y, Tolstykh T, Stock J. A specific protein carboxyl methylesterase that demethylates phosphoprotein phosphatase 2A in bovine brain. Proceedings of the National Academy of Sciences of the United States of America. 1996;93:6043-7.
60.Li Y, Yue P, Deng X, Ueda T, Fukunaga R, Khuri FR, Sun SY. Protein phosphatase 2A negatively regulates eukaryotic initiation factor 4E phosphorylation and eIF4F assembly through direct dephosphorylation of Mnk and eIF4E. Neoplasia (New York, NY. 2010;12:848-55.
61.Muta D, Makino K, Nakamura H, Yano S, Kudo M, Kuratsu J. Inhibition of eIF4E phosphorylation reduces cell growth and proliferation in primary central nervous system lymphoma cells. Journal of neuro-oncology. 2011;101:33-9.
62.Averous J, Gabillard JC, Seiliez I, Dardevet D. Leucine limitation regulates myf5 and myoD expression and inhibits myoblast differentiation. Experimental cell research. 2012;318:217-27.
63.Licursi M, Komatsu Y, Pongnopparat T, Hirasawa K. Promotion of viral internal ribosomal entry site-mediated translation under amino acid starvation. The Journal of general virology. 2012;93:951-62.
64.Day DA, Tuite MF. Post-transcriptional gene regulatory mechanisms in eukaryotes: an overview. The Journal of endocrinology. 1998;157:361-71.
65.Rachfall N, Heinemeyer I, Morgenstern B, Valerius O, Braus GH. 5''TRU: identification and analysis of translationally regulative 5''untranslated regions in amino acid starved yeast cells. Mol Cell Proteomics. 2011;10:M110 003350.
66.Vattem KM, Wek RC. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America. 2004;101:11269-74.
67.Fernandez J, Bode B, Koromilas A, Diehl JA, Krukovets I, Snider MD, Hatzoglou M. Translation mediated by the internal ribosome entry site of the cat-1 mRNA is regulated by glucose availability in a PERK kinase-dependent manner. The Journal of biological chemistry. 2002;277:11780-7.
68.Holcik M, Sonenberg N. Translational control in stress and apoptosis. Nat Rev Mol Cell Biol. 2005;6:318-27.
69.Yaman I, Fernandez J, Sarkar B, Schneider RJ, Snider MD, Nagy LE, Hatzoglou M. Nutritional control of mRNA stability is mediated by a conserved AU-rich element that binds the cytoplasmic shuttling protein HuR. The Journal of biological chemistry. 2002;277:41539-46.
70.Hutten S, Kehlenbach RH. CRM1-mediated nuclear export: to the pore and beyond. Trends in cell biology. 2007;17:193-201.
71.Topisirovic I, Siddiqui N, Lapointe VL, Trost M, Thibault P, Bangeranye C, Pinol-Roma S, Borden KL. Molecular dissection of the eukaryotic initiation factor 4E (eIF4E) export-competent RNP. The EMBO journal. 2009;28:1087-98.
72.Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KL. eIF4E is a central node of an RNA regulon that governs cellular proliferation. The Journal of cell biology. 2006;175:415-26.
73.Siddiqui N, Borden KL. mRNA export and cancer. Wiley interdisciplinary reviews. 2012;3:13-25.
74.Gebauer F, Hentze MW. Molecular mechanisms of translational control. Nat Rev Mol Cell Biol. 2004;5:827-35.
75.Kandil S, Brennan L, McBean GJ. Glutathione depletion causes a JNK and p38MAPK-mediated increase in expression of cystathionine-gamma-lyase and upregulation of the transsulfuration pathway in C6 glioma cells. Neurochemistry international. 2010;56:611-9.
76.Hensen SM, Heldens L, van Enckevort CM, van Genesen ST, Pruijn GJ, Lubsen NH. Activation of the antioxidant response in methionine deprived human cells results in an HSF1-independent increase in HSPA1A mRNA levels. Biochimie. 2013;95:1245-51.
77.Andreev DE, Dmitriev SE, Terenin IM, Prassolov VS, Merrick WC, Shatsky IN. Differential contribution of the m7G-cap to the 5'' end-dependent translation initiation of mammalian mRNAs. Nucleic acids research. 2009;37:6135-47.
78.Eisler H, Frohlich KU, Heidenreich E. Starvation for an essential amino acid induces apoptosis and oxidative stress in yeast. Experimental cell research. 2004;300:345-53.
79.Ronchi VP, Giudici AM, Mendieta JR, Caballero VJ, Chisari AN, Sanllorenti PM, Conde RD. Oxidative stress in mouse liver caused by dietary amino acid deprivation: protective effect of methionine. Journal of physiology and biochemistry. 2010;66:93-103.
80.Petti AA, Crutchfield CA, Rabinowitz JD, Botstein D. Survival of starving yeast is correlated with oxidative stress response and nonrespiratory mitochondrial function. Proceedings of the National Academy of Sciences of the United States of America. 2011;108:E1089-98.
81.Kimura R, Okouchi M, Fujioka H, Ichiyanagi A, Ryuge F, Mizuno T, Imaeda K, Okayama N, Kamiya Y, et al. Glucagon-like peptide-1 (GLP-1) protects against methylglyoxal-induced PC12 cell apoptosis through the PI3K/Akt/mTOR/GCLc/redox signaling pathway. Neuroscience. 2009;162:1212-9.
82.Okouchi M, Okayama N, Alexander JS, Aw TY. NRF2-dependent glutamate-L-cysteine ligase catalytic subunit expression mediates insulin protection against hyperglycemia- induced brain endothelial cell apoptosis. Current neurovascular research. 2006;3:249-61.
83.Hwang SL, Li X, Lee JY, Chang HW. Improved insulin sensitivity by rapamycin is associated with reduction of mTOR and S6K1 activities in L6 myotubes. Biochemical and biophysical research communications. 2012;418:402-7.
84.Liska DJ. The detoxification enzyme systems. Altern Med Rev. 1998;3:187-98.
85.Strange RC, Spiteri MA, Ramachandran S, Fryer AA. Glutathione-S-transferase family of enzymes. Mutat Res. 2001;482:21-6.
86.Sawaki M, Enomoto K, Takahashi H, Nakajima Y, Mori M. Phenotype of preneoplastic and neoplastic liver lesions during spontaneous liver carcinogenesis of LEC rats. Carcinogenesis. 1990;11:1857-61.
87.Moyer AM, Salavaggione OE, Wu TY, Moon I, Eckloff BW, Hildebrandt MA, Schaid DJ, Wieben ED, Weinshilboum RM. Glutathione s-transferase p1: gene sequence variation and functional genomic studies. Cancer Res. 2008;68:4791-801.
88.Wang T, Arifoglu P, Ronai Z, Tew KD. Glutathione S-transferase P1-1 (GSTP1-1) inhibits c-Jun N-terminal kinase (JNK1) signaling through interaction with the C terminus. J Biol Chem. 2001;276:20999-1003.
89.Wu Y, Fan Y, Xue B, Luo L, Shen J, Zhang S, Jiang Y, Yin Z. Human glutathione S-transferase P1-1 interacts with TRAF2 and regulates TRAF2-ASK1 signals. Oncogene. 2006;25:5787-800.
90.Berhane K, Widersten M, Engstrom A, Kozarich JW, Mannervik B. Detoxication of base propenals and other alpha, beta-unsaturated aldehyde products of radical reactions and lipid peroxidation by human glutathione transferases. Proceedings of the National Academy of Sciences of the United States of America. 1994;91:1480-4.
91.Okuda A, Sakai M, Muramatsu M. The structure of the rat glutathione S-transferase P gene and related pseudogenes. The Journal of biological chemistry. 1987;262:3858-63.
92.Sakai M, Okuda A, Muramatsu M. Multiple regulatory elements and phorbol 12-O-tetradecanoate 13-acetate responsiveness of the rat placental glutathione transferase gene. Proceedings of the National Academy of Sciences of the United States of America. 1988;85:9456-60.
93.Angel P, Imagawa M, Chiu R, Stein B, Imbra RJ, Rahmsdorf HJ, Jonat C, Herrlich P, Karin M. Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell. 1987;49:729-39.
94.Okuda A, Imagawa M, Sakai M, Muramatsu M. Functional cooperativity between two TPA responsive elements in undifferentiated F9 embryonic stem cells. The EMBO journal. 1990;9:1131-5.
95.Sies HJ, Packer L. Glutathione Transferases and Gamma-glutamyl Transpeptidases: Elsevier Academic Press; 2005.
96.Okuda A, Imagawa M, Maeda Y, Sakai M, Muramatsu M. Structural and functional analysis of an enhancer GPEI having a phorbol 12-O-tetradecanoate 13-acetate responsive element-like sequence found in the rat glutathione transferase P gene. J Biol Chem. 1989;264:16919-26.
97.Ohta K, Ohigashi M, Naganawa A, Ikeda H, Sakai M, Nishikawa J, Imagawa M, Osada S, Nishihara T. Histone acetyltransferase MOZ acts as a co-activator of Nrf2-MafK and induces tumour marker gene expression during hepatocarcinogenesis. Biochem J. 2007;402:559-66.
98.Lee HH, Park SA, Almazari I, Kim EH, Na HK, Surh YJ. Piceatannol induces heme oxygenase-1 expression in human mammary epithelial cells through activation of ARE-driven Nrf2 signaling. Archives of biochemistry and biophysics. 2010;501:142-50.
99.Dinkova-Kostova AT, Talalay P. NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Archives of biochemistry and biophysics. 2010;501:116-23.
100.Shenvi SV, Smith EJ, Hagen TM. Transcriptional regulation of rat gamma-glutamate cysteine ligase catalytic subunit gene is mediated through a distal antioxidant response element. Pharmacol Res. 2009;60:229-36.
101.Diccianni MB, Imagawa M, Muramatsu M. The dyad palindromic glutathione transferase P enhancer binds multiple factors including AP1. Nucleic acids research. 1992;20:5153-8.
102.Osada S, Takano K, Nishihara T, Suzuki T, Muramatsu M, Imagawa M. CCAAT/enhancer-binding proteins alpha and beta interact with the silencer element in the promoter of glutathione S-transferase P gene during hepatocarcinogenesis. The Journal of biological chemistry. 1995;270:31288-93.
103.Ikeda H, Omoteyama K, Yoshida K, Nishi S, Sakai M. CCAAT enhancer-binding protein alpha suppresses the rat placental glutathione S-transferase gene in normal liver. The Journal of biological chemistry. 2006;281:6734-41.
104.Furuyama T, Nakazawa T, Nakano I, Mori N. Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. The Biochemical journal. 2000;349:629-34.
105.Adachi M, Osawa Y, Uchinami H, Kitamura T, Accili D, Brenner DA. The forkhead transcription factor FoxO1 regulates proliferation and transdifferentiation of hepatic stellate cells. Gastroenterology. 2007;132:1434-46.
106.Malik AI, Storey KB. Transcriptional regulation of antioxidant enzymes by FoxO1 under dehydration stress. Gene. 2011;485:114-9.
107.Higuchi M, Dusting GJ, Peshavariya H, Jiang F, Hsiao ST, Chan EC, Liu GS. Differentiation of Human Adipose-Derived Stem Cells into Fat Involves Reactive Oxygen Species and Forkhead Box O1 Mediated Upregulation of Antioxidant Enzymes. Stem cells and development. 2012.
108.Oridate N, Nishi S, Inuyama Y, Sakai M. Jun and Fos related gene products bind to and modulate the GPE I, a strong enhancer element of the rat glutathione transferase P gene. Biochim Biophys Acta. 1994;1219:499-504.
109.Suzuki T, Morimura S, Diccianni MB, Yamada R, Hochi S, Hirabayashi M, Yuki A, Nomura K, Kitagawa T, et al. Activation of glutathione transferase P gene by lead requires glutathione transferase P enhancer I. J Biol Chem. 1996;271:1626-32.
110.Tsai CW, Yang JJ, Chen HW, Sheen LY, Lii CK. Garlic organosulfur compounds upregulate the expression of the pi class of glutathione S-transferase in rat primary hepatocytes. J Nutr. 2005;135:2560-5.
111.Reddy SP, Mossman BT. Role and regulation of activator protein-1 in toxicant-induced responses of the lung. Am J Physiol Lung Cell Mol Physiol. 2002;283:L1161-78.
112.Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999;13:76-86.
113.Ogura T, Tong KI, Mio K, Maruyama Y, Kurokawa H, Sato C, Yamamoto M. Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-terminal domains. Proc Natl Acad Sci U S A.107:2842-7.
114.Nishinaka T, Ichijo Y, Ito M, Kimura M, Katsuyama M, Iwata K, Miura T, Terada T, Yabe-Nishimura C. Curcumin activates human glutathione S-transferase P1 expression through antioxidant response element. Toxicology letters. 2007;170:238-47.
115.Ikeda H, Serria MS, Kakizaki I, Hatayama I, Satoh K, Tsuchida S, Muramatsu M, Nishi S, Sakai M. Activation of mouse Pi-class glutathione S-transferase gene by Nrf2(NF-E2-related factor 2) and androgen. The Biochemical journal. 2002;364:563-70.
116.Ikeda H, Nishi S, Sakai M. Transcription factor Nrf2/MafK regulates rat placental glutathione S-transferase gene during hepatocarcinogenesis. The Biochemical journal. 2004;380:515-21.
117.Morimitsu Y, Nakagawa Y, Hayashi K, Fujii H, Kumagai T, Nakamura Y, Osawa T, Horio F, Itoh K, et al. A sulforaphane analogue that potently activates the Nrf2-dependent detoxification pathway. The Journal of biological chemistry. 2002;277:3456-63.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top