( 您好!臺灣時間:2021/04/19 20:43
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Hong-Wei Lin
論文名稱(外文):Characteristics and Re-suspension Evaluation of River Fugitive Dust—A Field Study in Chunghua County
指導教授(外文):Chen-Yu LaiDih-Ling Luh
  • 被引用被引用:4
  • 點閱點閱:1075
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要以彰化縣境內,河川裸露地及河川沙洲區域因季風所引起河川揚塵之特性及其再懸浮進行調查。研究主要選擇濁水溪及烏溪兩條河流進行監測,時間從2011年6月29日至2012年6月28日止。季風發生期間,利用VEREWA-F701 PM10、VEREWA-F701 PM2.5持續監測河流沿岸的河川揚塵濃度。並利用氣象監測系統(Weather Link, Davis Vantage Pro)測定風速、方向、溫度和濕度。河川裸露地面積之估算則以衛星圖像,輔以電腦程式之影像像素估算進行。再懸浮研究部分則收集烏溪及濁水溪河川表面沙土,配合氣動粒徑分析儀(Aerodynamic Particle Sizer, APS)在風洞系統內進行揚塵再懸浮分析。

結果顯示,影響培英及潭墘監測站之PM濃度主要因素為降雨、風向及氣候因素,而採樣期間彰化縣境內並未發生河川揚塵事件。另由再懸浮模擬測試發現,烏溪沙土樣本含水率0 %、在風洞內風速14 m/s時,經過30秒吹拂,可將200公克表層沙土樣本再懸浮逸散達32.3 – 43.9 %之重量百分比,而含水率增為2.5 %時則為11.8 – 12.4 %。而在濁水溪含水率0 %時,則為43.2 – 51.8 %,但當含水率增為5 %時,其沙土樣本逸散則減為0 – 1.3 %。而沙土樣本在不同含水率及風速與沙土再懸浮之檢定結果顯示:含水率越低與揚塵再懸浮率越高,而風速越高與揚塵再懸浮率越高皆達統計顯著。而烏溪及濁水溪之沙土樣本在含水率0 %,風速14 m/s下之粒徑分佈峰值主要範圍為1.382 – 1.596 µm。

The major work of this study was to investigate the characteristics of fugitive dust along the riverside included the bare land, riverbed of rivers which was caused by monsoon in Chunghwa County, Taiwan.

This study was conducted for one year which began in June 29th, 2011, until June 28th, 2012. Two rivers, Wu River and Chuoshui River, were recruited in the study. VEREWA-F701 PM10, PM2.5, Micro-Orifice Uniform Deposit Impactor, and TSI 8520 DustTrak Aerosol Monitor were used to sample the concentrations of fugitive dust along the riverside during the monsoon duration. The wind speed, direction, temperature and humidity were measured by Weather Link (Davis Vantage Pro) meteorological monitoring system. The total area of bare land of riverside was estimated each season by means of the image processing techniques of satellites images and photos taken in-site. The surface layer of river sand and soil were collected (Chuoshui River), re-suspended and tested under wind tunnel by using Aerodynamic Particle Sizer.

The results of wind tunnel re-suspension indicated the higher wind speed could produce higher particle concentration, and smaller modal size of the size distribution. Moreover, when the water content of the river sand was below 2.5 %, the wind tended to re-suspend the river sand easily even in 1m/s of the wind speed under the wind tunnel. However, if the water content of the river sand was above 2.5 %, even in 14 m/s of the wind speed under the wind tunnel, few particles was re-suspended by wind blow. For instance, when the water content was in 0 % and wind speed in 14 m/s, the 30-second resuspension rate of 200-gram river sand was around 32.3 – 43.9 % in Wu River, but decreased to 11.8 – 12.4 %, when the water content increased to 2.5 %. On the other hand, when the water content was in 0 % and wind speed in 14 m/s, the 30-second resuspension rate of 200-gram river sand was around 43.2 – 51.8 % in Chuoshui River, but decreased to 0 – 1.3 %, when the water content increased to 5 %. Moreover, the statistical results also showed the agreement of the above association. In both rivers, the modal size range of river sand resuspension was around 1.382~1.596 µm under water content of 0 % and wind speed of 14 m/s.

摘要 III
Abstract IV
表目錄 11
第一章 前言 1
1.1研究緣起 1
1.2 研究目的 3
第二章 文獻探討 4
2.1 懸浮微粒之特性 4
2.2 懸浮微粒對人體之影響 9
2.3氣象因素、河川揚塵對空氣品質的影響 12
2.4 濁水溪 21
2.5 烏溪(大肚溪) 21
2.6 沙塵暴 22
第三章 研究方法 24
3.1 研究架構 24
3.2 採樣地點 26
3.2.1沙土採樣收集地點 26
3.2.2 環境監測 28 實地環境監測 28 空氣品質監測站 29
3.3 再懸浮模擬測試 30
3.3.1 樣本前處理 38
3.3.2實驗步驟及風洞系統 38
3.3.3風速之測定 41
3.3.4統計分析 43
3.4 裸露地面積計算 44
3.4.1 遙測技術 44
3.4.2 衛星圖資計算裸露地面積方式 45
第四章 結果與討論 50
4.1 戶外環境監測 50
4.1.1 100年7月份監測分析 63
4.1.2 100年8月份監測分析 70
4.1.3 100年9月份監測分析 75
4.1.4 100年10月份監測分析 80
4.1.5 100年11月份監測分析 85
4.1.6 100年12月份監測分析 92
4.1.7 101年1月份監測分析 100
4.1.8 101年2月份監測分析 108
4.1.9 101年3月份監測分析 114
4.1.10 101年4月份監測分析 120
4.1.11 101年5月份監測分析 126
4.1.12 101年6月份監測分析 131
4.2 風洞模擬試驗 139
4.2.1空氣流場均勻度測試結果 139
4.2.2 再懸浮測試 146
4.2.3 影響因子與沙土再懸浮率之影響 187
4.2.4含水率0 %粒徑分布 191
4.3 烏溪及濁水溪裸露地計算 197
第五章 結論 219
參考文獻 221

Bagnold, R.A., “The Physic of Blown Sands and Desert Dunes,” Mathuen, London , 1941.
Becker S., Devlin R.B., Haskill J.S. “Differential production of tumor necrosis factor, macrophage colony stimulating factor, and interleukin 1 by human alveolar macrophages,” Journal of Leukocyte Biology 1989;45:353-61
Brook, J.R., Dann, T.F. and Burnett, R.T., “The Relationship Among TSP, PM10, PM2.5, and Inorganic Constituents of Atmospheric Particulate Matter at Multiple Canadian Locations,” Journal of the Air & Waste Management Association, Vol. 47, pp. 2-19, 1997.
Carter J.D., Ghio A.J., Samet J.M., Devlin R.B. “Cytokine production byhuman airway epithelial cells after exposure to an air pollution particle is metal-dependant, ” Toxicology & Applied Pharmacology 1997;146-180.
Chen L.C., Fine J.M., Qu Q.S., Amdur M.O., “Gordon T. effects of fine and ultrafine sulfuric acid aerosol in guinea pigs: alteration in alveolar macrophage function and intracellular pH. ” Toxicology & Applied Pharmacology 1992;113:109-17.
Chow, J. C., J. C. Watson, J. E. Houck, L. C. Pritchett, C. F. Rogers, C. A. Frazier, R. T. Egami, and B. M. Ball, “A Laboratory Resuspension Chamber to Measure Fugitive Dust Size Distributions and Chemical Compositions,” Atmos. Environ. Vol. 28, No.21, pp. 3463-3481, 1994.
Gauderman, W.J., Gilliland, G.F., Vora, H., Avol, E., Styam, C., McConnrll, R., Thomas, D., Lurmann, F., Margolis, H.G., Rappaport, E.B., Berhane, K., and Peters, J. M., “Association between air pollution and lung function growth in southern California children:result form a second cohort,” Am. J. Respir. Crit. Care Med., Vol. 166(1), pp.76-84, 2002.
Goldsmith C.A., Imrich A., Danaee H., Ning Y.Y., Kobzik L. “Analysis of air pollution particulate-mediated oxidant stress in alveolar macrophages. ”Journal of Toxicology & Environmental Health 1998;54:529-545.
Jeffery, R., Tom, F. and Richard, T., “The relationship among TSP, PM10, PM2.5, and inorganic constituents of atmospheric particulate matter at multiple canadian locations.”, Journal of the Air and Waste Management Association, Vol. 47 ,pp.2-19, 1997.
Lai, C.Y., Chen, C.C., Hwang, J.S. and Shih, T.S.: Determination of Uniformity of Filter Deposits (Expanded Paper, Oral), 6th International Aerosol Conference, Taipei, Taiwan, September 8-13, 2002.
Lee, C.T. and Hsu, W.C., “The source apportionment of urban aerosols from chemical properties of aerosol spectra near atmospheric sources,” J. Chinese Institute of Engineers, Vol. 19, pp.1-13, 1996.
Mar, T., F., Norris, G., A. Koenig, J.Q., and Larson, T.V., “Associations between air pollution and mortality in Phoenix, 1995-1997,” Environ. Health Perapect., Vol. 108(4), pp.347-353, 2000.
Norris, G., Larson, T., Koenig, J., Claiborn, C., Sheppard, L., and Finn, D., “Asthma aggravation, combustion, and stagnant air,” Thorax, Vol. 55(6), pp.466-470, 2000.
Park,S.H., Gong, S.L., Gong, W., Makar, P.A., Moran, M.D., Stroud, C.A., and Zhang, J., “Sensitivity of surface characteristics on the simulation of wind-blown-dust source in North America,” Atmospheric Environment, Vol. 43, pp.3122-3129, 2009.
Schwartz, S.E., “The whitehouse effect-shortwave radiative forcing of climate by anthropogenic aerosols: an overview,” J. Aerosol Sci., Vol.27, pp.359-382, 1996.
Shrestha, A.B., Wake, C.P. and Dibb, J.E., “Chemical composition of aerosol and snow in the high Himalaya during the summer monsoon season,” Atmospheric Environment, Vol. 31, pp.2815-2826, 1997.
Solomon, P.A. and J.L. Moyers, “Use of a high volume dichotomous virtual impactor to estimate light extinction due to carbon and related species in the phoenix haze,” ience Total Environmental, Vol. 36, pp. 169-175, 1984.
Watson, J.G., Chow, J.C., Lowenthal, D.H., Pritchett, L.C., Frazier, C.A., Neuroth, G.R. and Robbins, R., “Differences in the carbon composition of source profiles for diesel- and gasoline-powered vehicles,” Atmospheric Environment, Vol. 28, pp.2493-2505, 1994.
Whitby, K.T. and G.M. Sverdrup, “California Aerosols:Their Physical and Chemical Characteristics,” Adv. Environmental Science and Technology, Vol.10, pp.477, 1980.
Whitby, K.T., Husar, R.B., and Liu, B.Y.H., “The aerosol size distribution of Los Angeles somg,” J. of Colloid and Interface Science, Vol. 39, pp.117-204, 1972.
Yang K.L., “Spatial and seasonal variation of PM10 mass concentrations in Taiwan,” Atmos. Environ., Vol. 36, pp.3403-3411, 2002.
Zhang, D., and Iwasaka, Y., “Nitrate and sulfate in individual Asian dust-storm particles in Beijing, China in spring of 1995 and 1996,” Atmospheric Environment, Vol. 33, pp.3213-3223, 1999.
王秋森、陳志傑,「臭氧及PM1/PM2.5/PM10氣懸微粒之暴露及健康風險評估-子計畫二:PM1/PM2.5/PM10 氣懸微粒粒徑分佈特性之評估」,國立台灣大學公衛學院職業醫學與工業衛生研究所,行政院國家科學委員會專題研究計畫NSC 88-2621-Z-002-011,1999。
葉啟輝、林啟文、郭崇義、陳宜清、胡哲明,「濁水溪下游段河川裸露地揚塵改善策略研究」 ,水利署96年度委辦計畫成果發表會,台中市,頁159-170,2007。

第一頁 上一頁 下一頁 最後一頁 top
1. 游繁結,「濁水溪河口飛沙量之調查與研究」,國立中興大學農林學報,1989。
2. 8. 古智有、鍾靜(2008),以課程為主軸的數學繪本教學,國民教育48(6),42-47。
3. 127. 顏怡欣(2009),運用繪本培養閱讀興趣教學策略分享。教師之友,51.1,73-83。
4. 125. 謝青龍(2009),從Lakatos的「科學研究綱領」論科學經典、科學教科書與科普書籍之關係。教育與社會研究,17,1-32。
5. 121. 鄭景俗、楊欣怡(2009),粗集理論萃取影響國小數學學習成就因素。資訊科技國際期刊,3(2),36-54。
6. 120. 蔡銘津(1996),增進學童閱讀理解的認知結構模式。資優教育季刊,61,19-24。
7. 109. 劉涓(2002),全球化浪潮下臺灣科普出版之研究。圖文傳播學報,2,281-290。
8. 73. 陳明蕾(2010),閱讀心理學對國小閱讀理解教學的啟示。教育研究月刊,199,53-63。
9. 48. 秦麗花、邱上真(2004),數學文本閱讀理解相關因素探討及其模式建立之研究─以角度單元為例。特殊教育與復健學報,12,99-121。
10. 39. 洪萬生(2007),國科會科普獎的隨想。科學月刊,38(1),4-5。
11. 37. 洪文東(1997),科學文章的閱讀理解。屏師科學教育,5,14-25。
12. 28. 林素微(2008),PISA數學素養評量的切入與設計。國民教育,48(6),15-21。
13. 27. 林家儀、邱銘心(2010),網路讀者書評文類分析研究:以科學普及類書評為例。教育資料與圖書館學,48(2),269-298。
14. 26. 林奕宏、張景媛(2001),多元智能與問題解決整合型教學模是對國小學生數學學習表現之影響。教育心理學報,33(1),1-30。
15. 21. 周玉秀(2006),「從PISA看數學素養與中小學數學教育」,科學教育月刊第293期,3-4頁。
系統版面圖檔 系統版面圖檔