(3.230.76.48) 您好!臺灣時間:2021/04/15 00:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳柏霖
研究生(外文):Bo-Lin Chen
論文名稱:以鋁接合鋁基碳化矽複合材料之研究
論文名稱(外文):Study on diffusion bonding of aluminum metal matrix composite reinforced with silicon carbide using an aluminum interlayer
指導教授:莊正利
指導教授(外文):Cheng-Li Chuang
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:職業安全衛生學系碩士班
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:66
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來工業迅速發展,鋁基碳化矽複合材料廣泛應用於汽車、航太工業與醫療產業等,為擴大鋁基碳化矽複合材料之用途,鋁基碳化矽複合材料之接合製程以熔融焊接為其主要方法,但熔融焊接過程中易伴隨輻射線、強光、金屬燻煙、高溫、有害氣體且具有感電之潛在危害,容易導致勞工產生白內障、皮膚癌、肺部病變及感電致死等職業災害,且因金屬基複合材料之強化材與基材間比重不同,熔融焊接容易使焊件中強化材產生偏析、雜質的混入,致使接合處出現氣泡與孔洞等缺陷,進而影響焊件之品質,故開發低危害與高性能之接合技術應用於鋁基碳化矽複合材料,實為必行之趨勢。
本研究藉由工程改善方式降低製程溫度、隔離高溫、高輻射等危害以提高鋁基碳化矽複合材料之作業環境安全及衛生條件,並克服熔融焊接容易產生之不良影響。本實驗主要以熱壓製程,將鋁粉末與碳化矽顆粒先行混合後燒結成母材,選用鋁金屬箔片作為接合層材料,藉由熱壓法在低於基材熔點之製程溫度下進行接合,探討以擴散原理進行接合之品質及接合形態。製程參數選用之製程溫度為350℃- 600℃、碳化矽強化材含量為5wt%-30wt%、燒結之持溫時間為10min-90min。研究重點包括各參數接合試片之巨觀與微觀結構差異、破斷面觀察、成份分析、接合後緻密度與剪切強度等。
實驗結果顯示當製程溫度提升,可有效促進鋁基材與鋁接合層材料原子間交互擴散,有助於提升鋁基碳化矽複合材料接合之緻密度及剪切強度;碳化矽強化材含量的提升有助於提升剪切強度,當碳化矽強化材含量持續增加時,鋁基材無形成有效之鍵結,故其強化效果隨之下降;持溫時間增加時,接合試片之緻密度與剪切強度隨之增加,但持溫時間過長時,剪切強度呈現下降的趨勢,主要原因為鋁基材產生晶粒之粗大化,致使剪切強度下降。當製程溫度600℃、碳化矽強化材含量25wt%、持溫時間30min,鋁基碳化矽複合材料之剪切強度達最高值104.1MPa,且破斷面主要出現為母材,說明接合區之強度高於母材強度,顯示鋁接合層材料與鋁基複合材料具良好的接合強度。綜整實驗結果得知,熱壓接合製程可提供鋁基碳化矽複合材料良好接合品質,並可降低傳統熔焊製程之危害因子,提高職場作業安全。


The metal matrix composite (MMC) has been used in automobile, aerospace and medical industrial. The welding process was a main scheme to fabricate the complex parts due to the machinability of the MMC was limited to their high hardness. However, the density of metal matrix is lighter than those of reinforcement, a separation occurs when metal matrix was molten and the defect of segregation would be form. This defect would degrade the welding quality of the MMC. Furthermore, the traditional arc fusion welding process has several potential hazardous factors, high temperature, fume, toxic gases and radiations to affect the occupational safety and welder’s health. In this study, a solid diffusion bonding process, hot pressing method was thus employed to improve the bonding quality of MMCs and to reduce the hazardous factors of bonding process. An aluminum reinforced with silicon carbide (SiC) particles was used as based metals, which were fabricated by powder metallurgy method. To increase the bondability of Al/SiC MMCs, an aluminum foil with a thickness of 50μm was selected as a bonding layer. The Al/SiC MMCs joins to each other with an aluminum foil bonding layer at an air atmosphere. The effects of main processing parameters, bonding temperature, bonding time and the fraction of reinforcement on the bonding quality were investigated. The bonding strength of MMCs was evaluated using a shear test, the observation and compositions identified on the fracture surfaces were using scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS). The Al/SiC MMCs bonded successfully with the Al bonding layer and both the bonding strength and density ratio were improved with increasing the bonding temperature. An elevated bonding temperature enhances the atomic interdiffusion between the Al base metal and the Al bonding foil. Increasing the fractional SiC reinforcement of base metal, the bonding strength is improved. However, the fraction of SiC reinforcement in base metal increases to 30wt%, SiC particles clusters at bonding interface to obstruct the Al atomic interdiffusion, and the bonding strength thus decreases significantly. Although extending the bonding time provides a high thermal input which enhances the Al atomic interdiffusion, and to improve the bonding quality, but the higher thermal input causes the grain growth and grain coarse on Al matrix leading to degrade the bonding quality. In the work, the highest bonding strength was 104.1 MPa for Al/SiC MMC with 25wt% reinforcement bonded at 600°C for 30min. This experimental result not only demonstrates the high bonding quality for Al/SiC MMC bonding to each other, but also this solid diffusion bonding process could reduce the procession hazards comparing the conventional fusion arc welding procession.



摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 前言 1
1-1 研究動機 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 金屬基複合材料簡介 3
2-1-1 金屬基複合材料之強化材 3
2-1-2 金屬基複合材料之製程 6
2-1-3 金屬基複合材料之優缺點 7
2-2 粉末冶金簡介 8
2-2-1 粉末冶金之發展史 8
2-2-2 粉末冶金法之優缺點 10
2-3 金屬基複合材料之接合 10
2-3-1熔焊 11
2-3-2硬焊及軟焊 11
2-3-3固態擴散接合 12
2-3-4固態擴散接合之接合層材料 13
2-3-5影響擴散接合之參數 15
第三章 實驗方法 19
3-1 鋁基碳化矽複合材料之製作 19
3-2 鋁基碳化矽複合材料之接合 22
3-3 接合試片微觀結構及機械性質分析 23
3-3-1微結構分析 23
3-3-2機械性質分析 23
3-4實驗步驟與流程 25
第四章 結果與討論 26
4-1製程溫度對接合之影響 26
4-1-1製程溫度對接合試片微觀結構之影響 26
4-1-2製程溫度對相對密度之影響 31
4-1-3製程溫度對剪切強度之影響 32
4-2碳化矽強化材含量對接合之影響 41
4-2-1碳化矽強化材含量對接合試片微觀結構之影響 41
4-2-2碳化矽強化材含量對相對密度之影響 45
4-2-3碳化矽強化材含量對剪切強度之影響 46
4-3持溫時間對接合之影響 51
4-3-1持溫時間對接合試片微觀結構之影響 51
4-3-2持溫時間對相對密度之影響 55
4-3-3持溫時間對剪切強度之影響 56
第五章 結論 61
參考文獻 63



圖目錄
圖一、Al18B4O33鬚晶強化鋁基複合材料之微觀結構[8] 4
圖二、Cu/ SCS6金屬基複合材料拉伸試驗斷裂區域之(a)SEM圖(b)背散射電子圖[9] 5
圖三、短纖維強化銅基複合材料之微觀結構[10] 6
圖四、擴散接合微觀結構變化示意圖[19] 14
圖五、以活性碳顆粒包圍燒結樣本區域並抽真空之示意圖[41] 18
圖六、鋁基碳化矽複合材料母材燒結過程之溫度與時間關係 20
圖七、鋁基碳化矽複合材料熱壓接合示意圖 23
圖八、接合試片剪切試驗示意圖 24
圖九、實驗流程圖 25
圖十、鋁基複合材料於製程溫度350℃接合後,試片之巨觀圖 27
圖十一、鋁基複合材料於不同製程溫度接合後,試片之巨觀圖 29
圖十二、鋁基複合材料於不同製程溫度接合後,試片之微觀結構 30
圖十三、鋁基複合材料於不同製程溫度接合後,試片之二次電子影像圖 31
圖十四、鋁基碳化矽複合材料(SiC 5wt.%)母材及不同製程溫度接合後,試片之相對密度關係圖 32
圖十五、鋁基碳化矽複合材料(SiC 5wt.%)於不同製程溫度接合後,試片之剪切強度關係圖 33
圖十六、鋁基複合材料於不同製程溫度接合後,試片之破斷面巨觀形態圖 34
圖十七、鋁基複合材料於不同製程溫度接合後,試片之破斷面二次電子影像圖 36
圖十八、鋁基複合材料於製程溫度400℃接合後,試片之二次影像圖 37
圖十九、鋁基複合材料於製程溫度600℃接合後,試片之二次影像圖 37
圖二十、鋁基複合材料於製程溫度600℃接合後,試片之X光繞射圖 38
圖二十一、鋁基複合材料於不同製程溫度接合後,試片之破斷面微觀結構 40
圖二十二、鋁基複合材料於製程溫度600℃接合後,試片之破斷面微結構放大圖 41
圖二十三、不同碳化矽含量鋁基複合材料接合後,試片之巨觀圖 42
圖二十四、不同碳化矽含量鋁基複合材料接合後,試片之微觀結構 44
圖二十五、不同碳化矽含量鋁基複合材料接合後,試片之二次電子影像圖 45
圖二十六、不同碳化矽含量鋁基複合材料母材及接合後試片之相對密度關係 46
圖二十七、不同碳化矽含量鋁基複合材料接合後試片之剪切強度關係 47
圖二十八、不同碳化矽含量鋁基複合材料接合後,試片之破斷面巨觀形態圖 48
圖二十九、不同碳化矽含量鋁基複合材料接合後,試片之破斷面二次電子影像圖 49
圖三十、不同碳化矽含量鋁基複合材料接合後,試片之破斷面微結構 50
圖三十一、鋁基複合材料於不同持溫時間接合後,試片之巨觀圖 52
圖三十二、鋁基複合材料於不同持溫時間接合後,試片之微結構 53
圖三十三、鋁基複合材料於不同持溫時間接合後,試片經蝕刻處理之微結構 54
圖三十四、鋁基複合材料於不同持溫時間接合後,試片之二次電子影像圖 55
圖三十五、不同持溫時間條件下接合後試片與接合前母材之相對密度關係 56
圖三十六、不同持溫時間條件下接合後試片之剪切強度關係 57
圖三十七、鋁基複合材料於不同持溫時間接合後,試片之破斷面巨觀形態圖 58
圖三十八、鋁基複合材料於不同持溫時間接合後,試片之破斷面二次電子影像圖 59
圖三十九、鋁基複合材料於不同持溫時間接合後,試片之破斷面微觀結構 60







表目錄
表一、碳化矽含量5wt%之鋁基複合材料於製程溫度400℃,接合負荷220MPa,持溫時間30min接合後,試片經能量散射光譜儀分析之成份 37
表二、碳化矽含量5wt%之鋁基複合材料於製程溫度600℃,接合負荷220MPa,持溫時間30min接合後,試片經能量散射光譜儀分析之成份 38



1.X. P. Zhang, L. Ye, Y.W. Mai, G.F. Quan, W. Wei, 〝Investigation on diffusion bonding characteristics of SiC particulate reinforced aluminium metal matrix composites (Al/SiCp-MMC)〞, Composites part A : applied science and manufacturing, 26(1999), pp. 1415-1421.
2.H. Miyazaki, M. Hotta, H. Kita, Y. Izutsu, 〝Joining of alumina with a porous alumina interlayer〞, CERAMICS INTERNATIONAL, 38(2012), pp. 1149-1155.
3.J.h. Huang, Y.L. Dong, Y. Wan, X. k. Zhao, H. Zhang, 〝Investigation on reactive diffusion bonding of SiCp /6063 MMC by using mixed powders as interlayers〞, Journal of Materials Processing Technology, 190(2007), pp. 312-316.
4.X.P. Zhang, G.F. Quan, W. Wei, 〝Preliminary investigation on joining performance of SiCp-reinforced aluminium metal matrix composite (Al/SiCp-MMC) by vacuum brazing〞, Composites part A : applied science and manufacturing, 30 (1999), pp. 823-827.
5.K.O. Cooke, T.I. Khan, G.D. Oliver, 〝Transient liquid phase diffusion bonding Al-6061 using nano-dispersed Ni coatings〞, Materials & Design, 33 (2012), pp. 469-475.
6.X.Y. Gu, D.Q. Sun, L. Liu, 〝Transient liquid phase bonding of TiC reinforced magnesium metal matrix composites (TiCP/AZ91D) using aluminum interlayer〞, Materials Science and Engineering A, 487 (2008), pp. 86-92.
7.J. Yan, Z. Xu, G. Wu, S. Yang, 〝Interface structure and mechanical performance of TLP bonded joints of Al2O3p/6061Al composites using Cu/Ni composite interlayers〞, Scripta Materialia, 51 (2004), pp. 147-150.
8.H.T. Zhang, J. Cao, H. Lu, 〝Reactive brazing of aluminium to aluminium-based composite reinforced with alumina borate whiskers with Cu interlayer〞, Vacuum, 84 (2010), pp. 474-477.
9.A. Brendel, V. Paffenholz, Th. Kock, H. Bolt, 〝Mechanical properties of SiC long fibre reinforced copper〞, Journal of Nuclear Materials, 386-388 (2009), pp. 837–840.
10.Z. Jun, X. J.cheng, H. Wei, X. Long, D. Xiaoyan, W. Sen, T. Peng, M. Xiaoming, Y. Jing, J. Chao, L. Lei, 〝Wear performance of the lead free tin bronze matrix composite reinforced by short carbon fibers〞, Applied Surface Science, 255 (2009), pp. 6647-6651.
11.陳建清, 〝探討多國籍企業子公司策略角色之演變與發展-以粉末冶金超硬合金泰登公司為例〞, 國立中央大學碩士論文, 民國九十二年.
12.C. Tatar, N. Ozdemir, 〝Investigation of thermal conductivity and microstructure of the α-Al2O3 particulate reinforced aluminum composites (Al/Al2O3-MMC) by powder metallurgy method〞, Physica B, 405 (2010), pp. 896-899.
13.H. Abdizadeh, M. Ashuri, P.T. Moghadam, A. Nouribahadory, H. R. Baharvandi, 〝Improvement in physical and mechanical properties of aluminum/zircon composites fabricated by powder metallurgy method〞, Materials and Design, 32 (2011), pp. 4417-4423.
14.M. Rahimian, N. Parvin, N. Ehsani, 〝Investigation of particle size and amount of alumina on microstructure and mechanical properties of Al matrix composite made by powder metallurgy〞, Materials Science and Engineering A, 527 (2010), pp. 1031-1038.
15.汪建民, 〝粉末冶金技術手冊〞, 中華民國粉末冶金協會出版, 1994.
16.J.Niu, X.Luo, H.Tian, J.Brnic, 〝Vacuum brazing of aluminium metal matrix composite (55 vol.% SiCp/A356) using aluminium-based filler alloy〞, Materials Science and Engineering B, 177(2012), pp. 1707-1711.
17.Y. Qina, J. Feng, 〝Active brazing carbon/carbon composite to TC4 with Cu and Mo composite interlayers〞, Materials Science and Engineering A, 525 (2009), pp. 181-185.
18.H. Sabetghadam, A. Z. Hanzaki, A. Araee, 〝Diffusion bonding of 410 stainless steel to copper using a nickel interlayer〞, MATERIALS CHARACTERIZATION, 61(2010), pp. 626-634.
19.陳志遠,〝鋁-銅軋延複合金屬特性研究〞,國立成功大學博士論文,民國九十六年.
20.S. Kundu, S. Chatterjee, 〝Interface microstructure and strength properties of diffusion bonded joints of titanium-Al interlayer-18Cr-8Ni stainless steel〞, Materials Science and Engineering A, 527 (2010), pp. 2714-2719.
21.X.H. Yin, M.S. Li, Y.C. Zhou, 〝Microstructure and mechanical strength of transient liquid phase bonded Ti3SiC2 joints using Al interlayer〞, Journal of the European Ceramic Society, 27 (2007), pp. 3539-3544.
22.H. Nami, A. Halvaee, H. Adgi, A. Hadian, 〝Microstructure and mechanical properties of diffusion bonded Al/Mg2Si metal matrix in situ composite〞, Materials and Design, 31 (2010), pp. 3908-3914.
23.H. Nami, A. Halvaee, H. Adgi, A. Hadian, 〝Investigation on microstructure and mechanical properties of diffusion bonded Al/Mg2Si metal matrix composite using copper interlayer〞, Journal of Materials Processing Technology, 210 (2010), pp. 1282-1289.
24.Z. Zhong, H. ch. Jung, T. Hinokib, A. Kohyama, 〝Effect of joining temperature on the microstructure and strength of tungsten/ferritic steel joints diffusion bonded with a nickel interlayer〞, Journal of Materials Processing Technology, 210 (2010), pp. 1805-1810.
25.J. L. Ruiz, Ena A. A. Reyes, 〝Mechanical properties of silicon nitride joints using a Ti-foil interlayer〞, Materials Letters, 58 (2004), pp. 2340-2344.
26.M. Yang, T. Lin, P. He, 〝Cu + TiB2 composite filler for brazing Al2O3 and Ti-6Al-4V alloy〞, Journal of Alloys and Compounds, 512 (2012), pp. 282-289.
27.H. Chen, K. Feng, S. Wei, J. Xiong, Z. Guo, H. Wang, 〝Microstructure and properties of WC-Co/3Cr13 joints brazed using Ni electroplated interlayer〞, Int. Journal of Refractory Metals and Hard Materials, 33 (2012), pp. 70-74.
28.A.H.M.E. Rahman, M.N. Cavalli, 〝Strength and microstructure of diffusion bonded titanium using silver and copper interlayers〞, Materials Science and Engineering A, 527 (2010), pp. 5189-5193.
29.P. Li, J. Li, J. Xiong, F. Zhang, S. H.Raza, 〝Diffusion bonding titanium to stainless steel using Nb/Cu/Ni multi-interlayer〞, MATERIALS CHARACTERIZATION, 68(2012), pp. 82-87.
30.O. Torun, R. Gurler, B. Baksan, I. Celikyurek, 〝Diffusion bonding of iron aluminide Fe72Al28 using a pure iron interlayer〞, Intermetallics, 13 (2005), pp. 801-804.
31.O. Torun, A. Karabulut, B. Baksan, I. Celikyurek, 〝Diffusion bonding of AZ91 using a silver interlayer〞, Materials and Design, 29 (2008), pp. 2043-2046.
32.O. Torun, I. Celikyurek, 〝Diffusion bonding of nickel aluminide Ni75Al25 using a pure nickel interlayer〞, Intermetallics, 16 (2008), pp. 406-409.
33.P. He, X. Yue, J.H. Zhang, 〝Hot pressing diffusion bonding of a titanium alloy to a stainless steel with an aluminum alloy interlayer〞, Materials Science and Engineering A, 486 (2008), pp. 171-176.
34.J.Zhang, Q.Shen, G.Luo, M.Li, L.Zhang, 〝Microstructure and bonding strength of diffusion welding of Mo/Cu joints with Ni interlayer〞, Materials and Design, 39 (2012), pp. 81-86.
35.M.I. Barrena,J.M. Gomez de Salazar, L. Matesanz, 〝Interfacial microstructure and mechanical strength of WC–Co/90MnCrV8 cold work tool steel diffusion bonded joint with Cu/Ni electroplated interlayer〞, Materials and Design, 31 (2010), pp. 3389-3394.
36.J.Zhang, Y.Xiao, G.Luo, Q.Shen, L.Zhang, 〝Effect of Ni interlayer on strength and microstructure of diffusion-bonded Mo/Cu joints〞, Materials Letters, 66 (2012), pp. 113-116.
37.Z.Zhong, T.Hinokib, A.Kohyama, 〝Effect of holding time on the microstructure and strength of tungsten/ferritic steel joints diffusion bonded with a nickel interlayer〞, Materials Science and Engineering A, 518 (2009), pp. 167-173.
38.J.C. Feng, D. Liu, L.X. Zhanga, X.C. Lin, P. He, 〝Effects of processing parameters on microstructure and mechanical behavior of SiO2/Ti–6Al–4V joint brazed with AgCu/Ni interlayer〞, Materials Science and Engineering A, 527 (2010), pp. 1522-1528.
39.D.Q. Sun, X.Y. Gu, W.H. Liu, 〝Transient liquid phase bonding of magnesium alloy (Mg–3Al–1Zn) using aluminium interlayer〞, Materials Science and Engineering A, 391 (2005), pp. 29-33.
40.X.Y. Gu, D.Q. Sun, L. Liu, Z.Z. Duan, 〝Microstructure and mechanical properties of transient liquid phase bonded TiCP/AZ91D joints using copper interlayer〞, Journal of Alloys and Compounds, 476 (2009), pp. 492-499.
41.H. Nami, A. Halvaee, H. Adgi, 〝Transient liquid phase diffusion bonding of Al/Mg2Si metal matrix composite〞, Materials and Design 32, (2011), pp. 3957-3965.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔