(34.204.185.54) 您好!臺灣時間:2021/04/11 06:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:江亭儀
研究生(外文):Ting-Yi Chiang
論文名稱:溶液pH值及氧化鉍對矽酸鈣骨水泥性質之影響
論文名稱(外文):Effect of solution pH and bismuth oxide on the properties of dicalcium silicate cement
指導教授:丁信智
指導教授(外文):Shinn-Jyh Ding
學位類別:博士
校院名稱:中山醫學大學
系所名稱:口腔科學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:70
相關次數:
  • 被引用被引用:0
  • 點閱點閱:440
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
白色的三氧礦化聚合物(WMTA)已廣範應用於牙科根管填充治療,然而白色的三氧礦化聚合物還有幾項主要的缺點,如有變色的潛在問題、材料成份中含有有毒性元素、操作困難及較長的硬化時間等缺點。本研究目的是開發新式的矽酸鈣根管填充材,並且對WMTA之物理化學性質進行比較,以改善其臨床應用上的缺點。為此探討 pH 7.4與pH 4.0的模擬體液(simulated body fluid, SBF)及不透光劑-氧化鉍對矽酸鈣骨水泥性質之影響。將添加20 wt%氧化鉍之矽酸鈣骨水泥粉末加入二次水,矽酸鈣骨水泥試片分別放置於不同pH值(pH 7.4和4.0)的SBF中浸泡,並觀察試片浸泡後之表面型態、重量損失、孔隙率、徑向拉伸強度與SBF之pH值變化。此外,為研究不透光劑–氧化鉍對矽酸鈣骨水泥性質之效應,添加不同重量百分比之氧化鉍於矽酸鈣骨水泥中,分析物理化學性質及生物相容性。結果指出矽酸鈣骨水泥試片浸泡於pH 7.4的SBF中1天後,沉積於試片表面之磷灰石球顆粒大於浸泡於pH 4.0的環境中的磷灰石球。然而其徑向拉伸強度並沒有明顯的統計差異(P > 0.05)。試片浸泡於pH 4.0的SBF中30天測量出有0.8%的重量損失;浸泡於pH 7.4的SBF則僅有0.2%的重量增加。另一方面,在氧化鉍含量研究中,發現提高氧化鉍含量顯著(P < 0.05)增加其硬化時間;而對浸泡液之酸鹼值變化和徑向拉伸強度則影響不大。就溶解度而言,不同含量氧化鉍之矽酸鈣骨水泥其溶解度為0.8-1.1%比WMTA的溶解度(1.4%)低,且具統計差異(P < 0.05)。氧化鉍似乎對MG63細胞增生、分化與鈣沉積顯著影響,相較於其他組別,含20 wt%氧化鉍之矽酸鈣骨水泥具較低之細胞增生、分化及礦化量。隨含量的提高降低生物性。本研究總結指出矽酸鈣骨水泥添加10 wt%氧化鉍可使矽酸鈣骨水泥具有良好的硬化時間、不透光性及骨形成性且具有作為取代WMTA用於牙髓根管填充材料之潛力。

White-colored mineral trioxide aggregate (WMTA) has been widely used in dental root canal filling treatment. However, there are several drawbacks of WMTA, including the discoloration potential, presence of toxic elements, difficult handling, and long setting time. The purpose of this study was to develop the new calcium silicate endodontic material as an alternative material for the endodontic applications. The effects of different pH (pH 7.4 and 4.0) of simulated body fluid (SBF), and Bismuth Oxide (Bi2O3) on the physicochemical properties of the dicalcium silicate cement were investigated. The morphology, weight loss, porosity, diametral tensile strength, in addition to pH changes in the cement-immersed solutions were evaluated. The physicochemical properties and osteogenicity of calcium silicate cements containing Bi2O3 in varying ratio were also examined. The size of precipitated apatite spherulites on the cement surfaces after soaking in the pH 7.4 solution for 1 day was greater than that in the pH 4.0 solution. Solution pH did not significantly affect (P > 0.05) the diametral tensile strength of cements. After soaking in SBF for 30 days, the sample was associated with a weight loss of 0.8% in the pH 4.0 solution; whereas in the pH 7.4 solution showed a weight increase of 0.2%. A greater porosity of the cement soaked in a pH 4.0 was found compared with that in the pH 7.4 solution. The setting time increased significantly (P < 0.05) with increasing ratio of Bi2O3. The pH value and diametral tensile strength of the cements were slightly affected by introducing Bi2O3. The solubility of the three radiopaque cements ranged between 0.8% and 1.1%, which was significantly (P < 0.05) lower than that of MTA (1.4%). 20 wt% Bi2O3 led to a lower cell proliferation, differentiation and calcium deposits of MG63 on the cement compared with the other cements. It is concluded that the addition of 10 wt% Bi2O3 to calcium silicate cement showed well setting time, radiopacity and osteogenic activity may has a potential for being used a endodotic retro-filling material as an alternative to WMTA.

目 錄
中文摘要 I
英文摘要 II
誌謝 III
目錄 V
表目錄 IX
圖目錄 X

第一章 緒論 1
1.1 文獻回顧與理論基礎 1
1.1.1 生醫材料 1
1.1.2 牙科生醫材料 2
1.1.3 牙髓根管填充材料 3
1.1.3.1 牙髓、根管治療的簡介 3
1.1.3.2 牙髓根管填充材料的種類 3
1.1.4 三氧礦化聚合物 5
1.1.4.1 組成 5
1.1.4.2 物理化學性質 6
1.1.5 矽酸鈣骨水泥 8
第二章 研究動機與目的 10

第三章 實驗材料與方法 11
3.1 試片製備 11
3.2 浸泡溶液製備 12
3.3 表面形態 14
3.4 徑向拉伸強度 14
3.5 重量改變 14
3.6 孔隙率 14
3.7 pH值變化 15
3.8 工作時間 15
3.9 硬化時間 16
3.10 相組成 16
3.11 不透光性 16
3.12 溶解度 19
3.13 細胞培養 19
3.14 細胞增生 20
3.15 細胞分化 20
3.16 鈣的定量 21
3.17 根管填充 22
3.18 推出強度 24
3.19 色調潛變 25
3.20 統計分析 25

第四章 結果與討論 26
4.1 pH值效應 26
4.1.1 表面形態 26
4.1.2 徑向拉伸強度 29
4.1.3 重量改變 32
4.1.4 孔隙率 34
4.1.5 pH值變化 36
4.2 氧化鉍效應 38
4.2.1 硬化時間 38
4.2.2 pH值變化 40
4.2.3 相組成 42
4.2.4 徑向拉伸強度 44
4.2.5 不透光性 46
4.2.6 溶解度 48
4.2.7 細胞培養 50
4.2.8 細胞分化 52
4.2.9 礦化作用 54
4.3 牙齒根管填充 56
4.3.1 根管填充 56
4.3.2 推出強度 58
4.3.3 色調潛變 61

第五章 結論 63

第六章 參考文獻 64





1.Camilleri J. The physical properties of accelerated Portland cement for endodontic use. International Endodontic Journal 2008;41:151–7.
2.Chen CC, Ho CC, Chen CH, Ding SJ. Physicochemical properties of calcium silicate cements for endodontic treatment. Journal of Endodontics 2009a;35:1288–91.
3.Chen CC, Ho CC, Chen CH, Wang WC, Ding SJ. In vitro bioactivity and biocompatibility of dicalcium silicate cements for endodontic use. Journal of Endodontics 2009b;35:1554–7.
4.Chen CC, Wang WC, Ding SJ. In vitro physiochemical properties of gelatin/chitosan oligosaccharide/calcium silicate hybrid cement. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2010;95:456–65.
5.Chen CC, Shie MY, Ding SJ. Human dental pulp cells responses to new calcium silicate-based endodontic materials. International Endodontic Journal 2011;44:836–42.
6.Chiang TY, Ding SJ. Comparative physicochemical and biocompatible properties of radiopaque dicalcium silicate cement and mineral trioxide aggregate. Journal of Endodontics 2010;36:1683–7.
7.Chng HK, Islam I, Yap AUJ, Tong YW, Koh ET. Properties of a new root-end filling material. Journal of Endodontics 2005;31:665–8.
8.Ding SJ, Shie MY, Wang CY. Novel fast-setting calcium silicate bone cements with high bioactivity and enhanced osteogenesis in vitro. Journal of Materials Chemistry 2009;19:1183–90.
9.Ding SJ, Shie MY, Wei CK. In vitro physicochemical properties, osteogenic activity, and immuno compatibility of calcium silicate-gelatin bone grafts for load-bearing applications. ACS Applied Materials & Interfaces 2011a;3:4142–53.
10.Ding SJ, Wei CK, Lai MH. Bio-inspired calcium silicate- gelatin bone grafts for load-bearing applications. Journal of Materials Chemistry 2011b;21:12793–802.
11.Fridland M, Rosado R, Eng C. Mineral trioxide aggregate (MTA) solubility and porosity with different water-topowder ratios. Journal of Endodontics 2003;29:814–7.
12.Gandolfi MG, Perut F, Ciapetti G, Romano Mongiorgi R, Prati C. New Portland cement-based materials for endodontics mixed with articaine solution: a study of cellular response. Journal of Endodontics 2008;34:39–44.
13.Gandolfi MG, Taddei P, Tinti A, Prati C. Apatite-forming ability (bioactivity) of ProRoot MTA. International Endodontic Journal 2010;43: 917–29.
14.Hu G, Xiao L, Fu H, Bi D, Ma H, Tong P. Study on injectable and degradable cement of calcium sulphate and calcium phosphate for bone repair. Journal of Materials Science: Materials in Medicine 2010;21: 627–34.
15.Islam I, Chng HK, Yap AUJ. Comparison of the physical and mechanical properties of MTA and Portland cement. Journal of Endodontics 2006;32:193–7.
16.Kao CT, Shie MY, Huang TH, Ding SJ. Properties of an accelerated mineral trioxide aggregate-like root-end filling material. Journal of Endodontics 2009;35:239–42.
17.Kayahan MB, Nekoofar MH, Kazandag˘ M, Canpolat C, Malkondu O, Kaptan F, Dummer PMH. Effect of acid-etching procedure on selected physical properties of mineral trioxide aggregate. International Endodontic Journal 2009;42:1004–14.
18.Liu WN, Chang J, Zhu YQ, Zhang M Effect of tricalcium aluminate on the properties of tricalcium silicate-tricalcium aluminate mixtures: setting time, mechanical strength and biocompatibility. International Endodontic Journal 2011;44:41–50.
19.Namazikhah MS, Nekoofar MH, Sheykhrezae MS, Salariyeh S, Hayes SJ, Bryant ST. The effect of pH on surface hardness and microstructure of mineral trioxide aggregate. International Endodontic Journal 2008;41:108–16.
20.Roy CO, Jeansonne BG, Gerrets TF. Effect of an acid environment on leakage of root-end filling materials. Journal of Endodontics 2001;27:7–8.
21.Shie MY, Huang TH, Kao CT, Huang CH, Ding SJ. The effect of a physiological solution pH on properties of white mineral trioxide aggregate. Journal of Endodontics 2009;35:98–101.
22.Shie MY, Chang HC, Ding SJ. Effects of altering the Si/Ca molar ratio of a calcium silicate cement on in vitro cell attachment. International Endodontic Journal 2012;45:337–45.
23.Shokouhinejad N, Nekoofar MH, Iravani A, Kharrazifard MJ, Dummer PMH. Effect of acidic environment on the push-out bond strength of mineral trioxide aggregate. Journal of Endodontics 2010;36:871–4.
24.Torabinejad M, Chivian N. Clinical applications of mineral trioxide aggregate. Journal of Endodontics 1999;25:197–205.
25.Torabinejad M, White DJ. Tooth filling material and method of use. U.S. Patent No.1995;5:415,547.
26.Watts JD, Holt DM, Beeson TJ, Kirkpatrick TC, Rutledge RE. Effects of pH and mixing agents on the temporal setting of tooth-colored and gray mineral trioxide aggregate. Journal of Endodontics 2007;33:970–3.
27.Yanikog˘lu N, Yes¸il Duymus¸ Z. Evaluation of the solubility of dental cements in artificial saliva of different pH values. Dental Materials Journal 2007;26:62–7.
28.Camilleri J, Montesin FE, Papaioannou S, McDonald F and TR. Ford Pitt. Biocompatibility of two commercial forms of mineral trioxide aggregate. International Endodontic Journal 2004;37:699-704.
29.Huang TH, Shie MY, Kao CT and Ding SJ. The effect of setting accelerator on properties of mineral trioxide aggregate. Journal of Endodontics 2008; 34:590-593.
30.Coomaraswamy KS, Lumley PJ and Hofmann MP. Effect of bismuth oxide radioopacifier content on the material properties of an endodontic Portland cement-based (MTA-like) system. Journal of Endodontics 2007;33:295-298.
31.Sugawara A, Asaoka K and Ding SJ. Calcium phosphate-based cements: clinical needs and recent progress. Journal of Material Chemistry B 2013;1: 1081-1089.
32.Ndong F, Sadhasivam S, Lin FH, Savitha S, Wen-His W and Lin C. P. The development of iron-free partially stabilized cement for use as dental root-end filling material. International Endodontic Journal 2012;45:557-564.
33.Chiang TY and Ding SJ. Physicochemical properties of radiopaque dicalcium silicate cement as a root-end filling material in an acidic environment. International Endodontic Journal 2013;46:234-241.
34.Camilleri J. Hydration mechanisms of mineral trioxide aggregate. International Endodontic Journal 2007;40:462-470.
35.Ding SJ, Shie MY, Hoshiba T, Kawazoe K, Chen G and Chang H. C. Osteogenic differentiation and immune response of human bone marrow-derived mesenchymal stem cells on injectable calcium silicate-based bone grafts. Tissue Engineering, Part A. 2010;16:2343-2354.
36.Camilleri J and Gandolfi MG. Evaluation of the radiopacity of calcium silicate cements containing different radiopacifiers. International Endodontic Journal 2010; 43: 21-30.
37.Sabokbar A, Millett P, Myer B. and Rushton N. A repid quantitative assay for measuring alkaline phosphatase activity in osteoblastic in vitro. Journal of Bone and Mineral Research 1994;27:57-67.
38.Ding SJ, Shie MY and Wei CK. In vitro physicochemical properties, osteogenic activity, and immunocompatibility of calcium silicate-gelatin bone grafts for load-bearing applications. Acs Applied Materials & Interfaces 2011;3:4142-4153.
39.Min KS, Chang HS, Bae JM, Park SH, Hong CU and Kim EC. The induction of heme oxygenase-1 modulates bismuth oxide-induced cytotoxicity in human dental pulp cells. Journal of Endodontics 2007;33:1342-1346.
40.Shie MY, Chen CH, Wang CY, Chiang TY, Ding SJ. Immersion behavior of gelatin-containing calcium phosphate cement. Acta Biomaterialia 2008;4:646–655.
41.Fujishiro Y, Takahashi K, Sato T. Preparation and compressive strength of a-tricalcium phosphate/gelatin gel composite cement. Journal of Biomedical Materials Research 2001;54:525–30.
42.Bigi A, Bracci B, Panzavolta S. Effect of added gelatin on the properties of calcium phosphate cement. Biomaterials 2004;25:893–9.
43.Saleh IM, Ruyter IE, Haapasalo MP, Orstavik D. Adhesion of endodontic sealers: scanning electron microscopy and energy dispersive spectroscopy. Journal of Endodontics 2003;29:595–601.
44.Reyes-Carmona JF, Felippe MS, Felippe WT. Biomineralization ability and interaction of mineral trioxide aggregate and white Portland cement with dentin in a phosphate containing fluid. Journal of Endodontics 2009;35:731–6.
45.Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review—part I: chemical, physical, and antibacterial properties. Journal of Endodontics 2010;36:16–27.
46.Gancedo-Caravia L, Garcia-Barbero E. Influence of humidity and setting time on the push-out strength of mineral trioxide aggregate obturations. Journal of Endodontics 2006; 32:894–6.
47.Camilleri J, Montesin FE, Brady K, Sweeney R, Curtis RV, Ford TR. The constitution of mineral trioxide aggregate. Dental Materials Journal 2005;21:297–303.
48.Sluyk SR, Monn PC, Hartwell GR. Evaluation of setting properties and retention characteristics of mineral trioxide aggregate when used as a furcation perforation repair material. Journal of Endodontics 1998;24:768–71.
49.Goracci C, Tavares AU, Fabianelli A, Monticelli F, Raffaelli O, Cardoso PC, Tay F, Ferrari M. The adhesion between fiber posts and root canal walls: comparison between microtensile and push-out bond strength measurements. European Journal of Oral Sciences 2004;112:353–61.
50.Bozeman TB, Lemon RR, Eleazer PD. Elemental analysis of crystal precipitate from gray and white MTA. Journal of Endodontics 2006;32:425–8.
51.Asgary S, Parirokh M, Eghbal MJ, Ghoddusi J, Kheirieh S, Brink F. A comparative study of white mineral trioxide aggregate and white Portland cements using x-ray microanalysis. Australian endodontic journal 2004;30:89–92.
52.Bogen G, Kuttler S. Mineral trioxide aggregate obturation: a review and case series. Journal of Endodontics 2009;35:777–90.
53.Bakland LK. Revisiting traumatic pulpal exposure: materials, management principles, and techniques. Dental Clinics of North Am Erica 2009;53:661–73.
54.Asgary S, Parirokh M, Eghbal MJ, Stowe S, Brink F. A qualitative x-ray analysis of white and gray mineral trioxide aggregate using compositional imaging. Journal of Material Science: Materials in Medicine 2006;17:187–91.
55.Asgary S, Parirokh M, Eghbal MJ, Brink F. Chemical differences between white and gray mineral trioxide aggregate. Journal of Endodontics 2005;31:101–3.
56.Sanz O, Haro-Poniatowski E, Gonzalo J, Navarro JF (2006) Influence of the melting conditions of heavy metal oxide glasses containing bismuth oxide on their optical absorption. Journal of Non-Crystalline Solids 2006;352:761–8.
57.Zhang Y, Yang Y, Zheng J, Hua W, Chen G. Effects of oxidizing additives on optical properties of Bi2O3-B2O3-SiO2 glasses. Journal of the American Ceramic Society 2008;91:3410–2.
58.Felman D, Parashos P. Coronal Tooth Discoloration and White Mineral Trioxide Aggregate. Journal of Endodontics 2013;39:484–487.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔