(3.230.76.48) 您好!臺灣時間:2021/04/13 16:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林少鏞
研究生(外文):Shao-Yung Lin
論文名稱:製程參數和氧化物添加劑對二鈣矽酸鹽骨水泥的物理化學性質之影響
論文名稱(外文):Effect of processing parameters and oxide additives on the physicochemical properties of dicalcium silicate bone cements
指導教授:丁信智
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:口腔材料科學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:49
相關次數:
  • 被引用被引用:0
  • 點閱點閱:80
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鈣矽骨水泥為一種可植入人體內幫助骨組織修復之生醫材料。本研究是探討製備此骨水泥之各種方法對鈣矽骨水泥物理化學性質的改變,像是分別使用溶膠凝膠法和水熱法、調配材料鈣和矽的含量比例、煆燒溫度之不同,和添加金屬氧化物之後的影響。除了測試和觀察各種不同參數的鈣矽骨水泥之物理性質和表面形態之外,也使用體外模擬體液浸泡實驗來測試骨水泥之生物活性和浸泡後之性質改變。結果顯示兩種製程之粉體大小約為10μm,但隨著煆燒溫度增加,粒徑隨之變小。矽含量越高會增加硬化時間。在體外生物活性測試中,隨著測試時間的增加,骨水泥之強度、孔隙率、重量損失皆有所變化,我們發現溶膠凝膠製程和煆燒溫度800度之骨水泥的表現優良。由此可知水熱法應用在陶瓷骨水泥製程上雖然很有潛力,仍有相當發展的空間,還有待我們去更進一步研究和探討。

Calcium silicate bone cement is a biomaterial which implant in the human body and help of bone repair. This study was to develop investigate various methods of preparation of this bone cement change physical and chemical properties of calcium silicate bone cement, like sol-gel , hydrothermal method, ratio of Si/Ca, different calcination temperatures, and effect of oxide additives. In addition to the physical properties and surface morphology of the various conditions of testing and observation calcium silicon bone cement, also used in vitro SBF experiments to test the bioactivity and properties of changed. The results of two methods powder size is approximately 10μm, however, as the calcination temperature increases, the powder size will be smaller. The higher the silicate content and sintering temperature will increase the setting time. In vitro bioactive test, as the time increasing, all of the DTS, porosity, weight loss have many changes. We find out the bone cement of Sol-gel method and at 800˚C calcination temperatures has very well performance. That we know it is very large range to improve the bone cement of hydrothermal method, and we should study and investigate it in the further.

致謝……………………………………………………………………I
中文摘要……………………………………………………………...II
Abstract…………….…………………….………………………….III
總目錄……………………………………...………………………..IV
表目錄……………………………………………………………….VI
圖目錄………………………………………………………..……..VII

第一章 緒論………………………………………………………….1
1-1 生醫材料……………………………………………….…....1
1-1-1 金屬材料…….……………………………………..…2
1-1-2 高分子材料…………………………………………...3
1-1-3 陶瓷材料……………………………………………...4
1-1-4 複合材料……………………………………………...5
1-2 人體骨組織之理論基礎…………………………………….6

1-3 骨水泥……………………………………………………...10
1-4 鈣矽骨水泥之製程參數…………………….…………….11
1-4-1 合成方法…………………………………………….11
1-4-2 鈣矽莫耳比例……………………………………….15
1-4-3 煆燒溫度…………………………………………….15
1-5 金屬氧化物………………………………………………...15
1-5-1 氧化銅……………………………………………….15
1-5-2 氧化鍶…………………………………………….…16
1-5-3 氧化鋅……………………………………………….16
1-5-4 氧化鑭……………………………………………….16
1-7 研究動機與目的…………………………………………...17

第二章 材料與方法…………………………………………...……18
2.1 陶瓷粉體之製備………………………………………...…18
2.1.1 溶膠凝膠法……………………………………..……18
2.1.2 水熱法……………………………………………..…18
2.1.3 含金屬氧化物陶瓷粉體之製備……………..……..19
2.1.4 骨水泥之製備…………………………………...…..19
2.2 物理性質分析……………………………………….……..19
2.2.1 硬化時間測試………………………...……………..19
2.2.2 徑向拉伸強度……...………………………………..20
2.2.3 孔隙率測試……...…………………………………..20
2.2.4 相組成………………………………...……………..20
2.2.5 形態…………………………………………………..21
2.3體外生物活性分析……………………………..…………..21
2.3.1 徑向拉伸強度……………………………...………..21
2.3.2 孔隙率………………………………………………..21
2.3.3 重量損失……………………………………………..21
2.3.4 相組成………………………………………………..22
2.3.5 形態…………………………………………………..22

第三章 結果與討論………………………………………………...23
3.1 鈣矽粉體與骨水泥性質分析……………………………..23
3.1.1 相組成………………………………………………..23
3.1.2 硬化時間……………………………………………..25
3.1.3 徑向拉伸強度……………………………………….27
3.1.4 孔隙率………………………………………………..28
3.1.5 形態………………………………………………..…29
3.2 體外生物活性測試………………..……………………………31
3.2.1 徑向拉伸強度…………..………………………………..31
3.2.2 孔隙率…………..………………………………………..32
3.2.3 重量損失…………..……………………………………..34
3.2.4 相組成…………………………………………………….36
3.2.5 形態……………………………………………………….41

第四章 結論……………………………………………………...…43

第五章 參考文獻…………………………………………………...44



[1]Clemson Advisory Board for Biomaterials “Definition of the word biomaterial”, Thc 6th Annnal Intermalionel Biomaterial Symposium, April 20–24, 1974.
[2]Williams DF, “Definitions in biomaterials. Proceedings of a consensus conference of the European society for biomaterials, Chester, England. March 3-5 1986, Vol. 4, Elsevier, New York
[3]Calcaterra, L. A., J. A. Briano, and D. F. Williams. 1999. Field studies of the parasitic antSolenopsis daguerrei (Hymenoptera: Formicidae) on fire ants in Argentina. Environ. Entomol. 28: 88–95.
[4] Fujibayashi S, Kim HM, Neo M, Uchida M, Kokubo T, Nakamura T. Repair of segmental long bone defect in rabbit femur using bioactive titanium cylindrical mesh cage. Biomaterials 2003;24:3445–3451.
[5]Lanza, R.P., Langer, R. and Vacanti, J., “Principles of Tissue Rngineering, 2nd Ed”, Academic Press, 2000
[6]Alam MI, Asahina I, Ohmamiuda K, Takahashi K, Yokota S, Enomoto S. Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhBMP-2. Biomaterials 2001;22:1643–1651.
[7] M. Baleani, L.Cristofolini and M. Viceconti, “Endurance testing of hip prodtheses : a comparison between the load fixed in ISO 7206 standard and the physiological loads ” Clinical Biomechanics, Vol.14, pp.339–345, 1999.
[8] Saito N, Takaoka T. New synthetic biodegradable polymers as BMP carriers for bone tissue engineering. Biomaterials 2003;24:2287–2293.
[9]Zhang, F.Huang, N.Yang, P.Zeng, X. Mao, Y. heng, Z. Zhou,. et. al., "Blood compatibility of titanium oxide prepared by ion-beam-enhanced deposition,"
[10]Goldsmith AA., Dowson D., Issac GH., Lancaster JG., “A comparative joint simulator study of the wear of metal-on-metal and alternative material combinations in hip replacements.” , Proceedings of the Institution of Mechanical Engineers. Part H-Journal of Engineering in Medicine. (214)1:30–47,2000.
[11]Jacob K. Handbook of biomedical engineering. Acad. Press, Inc., 1988.
[12]Shapiro J. In: Acrylic Cement in Orthopaedic Surgery. Personal Communication to J Charneley, E&S Livingstone, Edinburgh and London, 127.
[13]LL Hench, EC Ethridge Biomaterials: An Interfacial Approach, Biophysics and Bioengineering Series Vol. 4Academic Press, New York (1982), pp. 62–86
[14]Hench LL, Lee TG, Allen WC, Piotrowski G. An investigation of a rosthetic material. U.S. Army Med Res and Develop Command, Contract No. OA 17-70-C-001 1970–1975.
[15]Hench LL, Paschall HA. Direct chemical bond of bioactive glass-ceramic material to bone and muscle. J Biomed Mater Res Symp 1973;4:27–45.
[16]Ishizawa H, Ogino M. Formation and characterization of anodic titanium oxide films containing Ca and P.J Biomed Mater Res 1995;29:65–72.
[17]Ishizawa H, Ogino M. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment. J Biomed Mater Res 1995;29:1071–1079.
[18]Takatsuka K, Yamamuro T, Nakamura T, Kokubo T. Bone-bonding behavior of titanium alloy evaluated mechanically with detaching failure load. J Biomed Mater Res 1995;29:157–163.
[19]Mittelmeier H, Katthagen BD. Clinical experience with the implantation of collagen-apatite for local bone regeneration. [German] Zeitschrift fur Orthop und Ihre Grenzgebiete 1983;121:115–123.
[20]Chieerici G. Biological response to a lyophilised collagen gel implanted in parietal bone defects in a Rhesus monkey. Collagen Corporation Internal Publication, 1984, Report 3, p. 116.
[21]Bigi A, Torricelli P, Fini M, Bracci B, Panzavolta S, Sturba L, Giardino R Department of Chemistry G. Ciamician, University of Bologna, Bologna, Italy. The International Journal of Artificial Organs 2004;27:664–673.
[22]Chen, Chun-Cheng, Lai Meng-Heng, Wang Wei-Chung. Properties of anti-washout-type calcium silicate bone cements containing gelatin. Journal of Materials Science: Materials in Medicine. 2010;21:1057–1068.
[23]Shinn-Jyh Ding , Chung-Kai Wei and Meng-Heng Lai. Bio-inspired calcium silicate–gelatin bone grafts for load-bearing applications. J. Mater. Chem.2011;21:12793–12802.
[24]Hole JW, JR, Koos KA. Human Anatomy. WCB Press.1991:117–256.
[25]Cooper, D.M.L. Matyas, J.R. Katzenberg, M.A. and B. Hallgrimsson. Comparison of Microcomputed Tomographic and Microradiographic Measurements of Cortical Bone Porosity. Calcified Tissue International 2004 74:437–447.
[26] Keaveny TM and Hayes WC: Mechanical Properties of Cortical and Trabecular Bone, in Bone. A Treatise, Volume 7: Bone Growth; B, Editor Hall BK, CRC Press, Boca Raton, FL, 1993, pp 285–344.
[27]Zioupos, P. and Currey, J.D. Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone 1998;22:57–66.
[28] Seal BL, Otero TC, Panitch A. Polymeric biomaterials for tissue and organ regeneration. Materials Science and Engineering: R: Reports 2001;34:147–230.
[29] Kaplan FS, Hayes WC, Keaveny TM, Boskey A, Einhorn TA, Iannotti JP. Form and Function of Bone, in Orthopaedic Basic Science. 1994;127–184.
[30] Hench LL. Bioceramics. J Am Ceram Soc 1998;81:1705-28.
[31]Turek SL. Orthopaedics Principles and Their Applications. J.B. Lippincott Company, 1984;1:31–100.
[32]R Murugan and S Ramakrishna-Development of nanocomposites for bone grafting, Composites Science and Technology, 2005;65:2385–2406.
[33]Huether SE, McCance KL. Understanding Pathophysiology. Second edition, 2000.
[34]Sikavitsas VI, Temenoff JS, Mikos AG. Biomaterials and bone. Biomaterials 2001;22:2581–2593.
[35]王世晞,陳德皓,徐志宏編譯, Junquerira 原著,基礎組織學,藝軒圖書出版社,第三版, 1988 。
[36]Kenny, S.M.; Buggy, M. “Bone cements and fillers: a review.” J Mater Sci Mater Med .2003;14:923–938.
[37]Torabinejad M, Pitt Ford TR.Root end filling materials: a review. Endod. Dent Traumatol 1996;12:161–178.
[38] Ribeiro DA. Do endodontic compounds induce genetic damage? A comprehensive review. Oral Surg Oral Med Oral Pathol Oral. Radiol Endod 2008;105:251–256.
[39] Reffitt D.M.; Ogston N.; Jugdaohsingh R.; Cheung H.F.J.; Evans B.A.J.; Thompson R.P.H.; Powell J.J.; Hampson G.N. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone. 2003;32:127–35
[40] Brinker C.J., Scherer G.W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. San Diego: Academic Press: Boston, 1990.
[41]G.W. Morey, Hydrothermal Synthesis. Journal of the American Ceramic Society, 1953;36:279–285.
[42] Kokubo, T. Mechanism of apatite formation on CaO-SiO2-P2O5 glasses in a simulated body fluid. Journal of Non-Crystalline Solids, 1992;143:84-92.
[43] Shie MY, Chang HC, Ding SJ. Effects of altering the Si/Ca molar ratio of a calcium silicate cement on in vitro cell attachment. Int Endod J. 2011;45:337–345.
[44]J. Roma’n, S. Padilla, M. Vallet-Regı. Sol-Gel Glasses as Precursors of Bioactive Glass Ceramics. Chem. Mater. 2003;15: 798–806.
[45]Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other diseases. Nat Med 1995;1:27–31.
[46]Hiroshi Iguchi, Ryuichi Kasai, Hideo Okumura, Takao Yamamuro, Herbert M. Kagan, Effect of dietary cadmium and/or copper on the bone lysyl oxidase in copper-deficient rats relative to the metabolism of copper in the bone. Bone and Mineral 1990:10:1:51–59
[47]Chengtie Wu, Yinghong Zhou, Mengchi Xu, Pingping Han, Lei Chen, Jiang Chang*, Yin Xiao*. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials .2013, 34(2):422-433
[48] Sobel AE, Cohen Y, Kramer B. The nature of the injury to the calcifying mechanisms in rickets due to strontium. Biochem J 1935; 29:2640–2645.
[49]Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 2004;350:459–68.
[50] Wu Chengtie, Ramaswamy Yogambha, Kwik Danielle, Zreiqat Hala. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties. Biomaterials 2007;28:3171–3181.
[51] Wong CT, Lu WW, Chan WK, Cheung KM, Luk KD, Lu DS. In vivo cancellous bone remodeling on a strontium-containing hydroxyapatite (sr-HA) bioactive cement. J Biomed Mater Res 2004;68A:513–21.
[52] Rokita E, Mutsaers PHA, Quaedackers JA, Taton G, de Voigt MJA. Bone mineralization after strontium and fluoride treatment in osteoporosis. Nucl Instrum Methods Phys Res B 1999;158:412–417.
[53] Verberckmoes SC, De Broe ME, D’Haese PC. Dose-dependent effects of strontium on osteoblast function and mineralization. Kidney Int 2003;64:534–43.
[54] Panzavolta S, Torricelli P, Sturba L, Bracci B, Giardino R, Bigi A. Setting properties and in vitro bioactivity of strontium-enriched gelatin–calcium phosphate bone cements. J Biomed Mater Res A 2007;965–972.
[55] Coble, Y. D., Bardin, C. W., Ross, G. T., and Darby, W. T. Studies of endo-crine function in boys with retarded growth, delayed sexual maturation and zinc defiency. J Clin Endocrinol Metab 1971;32:361-367.
[56]Hurley, L. S., Gowan, J., and Milhaud, G. Calcium metabolism in manganese-deficient and zinc-deficient rats. Proc Soc Exp Biol Med 1969;130:856-860.
[57] Oner, G.. Bhaumick, B., and Bala, R. M. Effect of zinc deficiency on serum somatomedin levels and skeletal growth in young rats. Endocrinology. 1984;114:1860-1863.
[58] Saltman, P. D. and Strause, L.G. The role of trace minerals in osteoporosis. J Am Coil Nutr. 1993;12:384-389.
[59] W. R. Holloway , F. M.Collier, R. E. Herbst, J.M. Hodge, G. C. Nicholson. Osteoblast-Mediated Effects of Zinc on Isolated Rat Osteoclasts: Inhibition of Bone Resorption and Enhancement of Osteoclast Number. Bone. 1996;19:137–142.
[60] S. Kehoe E. Tonkopi, R.J. Abraham D. Boyd. Journal of Non-Crystalline Solids. Journal of Non-Crystalline Solids 2012;358 : 3388–3395.
[61] Rina Nazarov, Hyoung-Joon Jin, and David L. Kaplan. Porous 3-D Scaffolds from Regenerated Silk Fibroin. Biomacromolecules 2004;5:718–726.
[62] Kokubo T., Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials.2006;27:2907–2915.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 14. 林玫玫,2005,“服務品質與顧客滿意度關係之研究”,經營管理論叢,第一屆管理與決策2005年學術研討會特刊,頁287-294。
2. 13. 李義昭、張登凱、鄭魁香、丁鏗升,2011.5,公眾無線區域網路服務品質之實證研究。中華管理評論國際學報,14卷2期
3. 13. 李義昭、張登凱、鄭魁香、丁鏗升,2011.5,公眾無線區域網路服務品質之實證研究。中華管理評論國際學報,14卷2期
4. 10. 王美慧、唐資文、曾秋蘭,2007,“公部門組織文化、員工工作滿足、全面品質管理與服務品質滿意度之研究”,品質學報,Vol.14,No.1。
5. 10. 王美慧、唐資文、曾秋蘭,2007,“公部門組織文化、員工工作滿足、全面品質管理與服務品質滿意度之研究”,品質學報,Vol.14,No.1。
6. 6. 鄧維兆、林世泰、蔡志弘,2007.11,“企業內部服務品質對員工工作滿意度之影響研究”,品質月刊,頁61-66。
7. 6. 鄧維兆、林世泰、蔡志弘,2007.11,“企業內部服務品質對員工工作滿意度之影響研究”,品質月刊,頁61-66。
8. 5. 鄧維兆、林孟儒、蔡志弘,2005.11,“內部服務品質評量基礎之員工工作滿意度研究-以國際觀光飯店為例”,品質月刊,頁79-83。
9. 4. 楊輝南,2011.01,博物館服務之顧客滿意度研究-以彰化縣M博物館為例,建國科大社會人文期刊,30卷1期,頁25-46。
10. 5. 鄧維兆、林孟儒、蔡志弘,2005.11,“內部服務品質評量基礎之員工工作滿意度研究-以國際觀光飯店為例”,品質月刊,頁79-83。
11. 4. 楊輝南,2011.01,博物館服務之顧客滿意度研究-以彰化縣M博物館為例,建國科大社會人文期刊,30卷1期,頁25-46。
12. 2. 曾光榮、程良村,2008.11,地方政府服務品質之研究-以新竹市政府為例,華人前瞻研究,4卷2期,p.81-96。
13. 2. 曾光榮、程良村,2008.11,地方政府服務品質之研究-以新竹市政府為例,華人前瞻研究,4卷2期,p.81-96。
14. 14. 林玫玫,2005,“服務品質與顧客滿意度關係之研究”,經營管理論叢,第一屆管理與決策2005年學術研討會特刊,頁287-294。
15. 15. 周泰華、黃俊英、郭德賓,1999,服務品質與顧客滿意評量模式之比較研究,輔仁管理評論,第6卷第1期,3月,p.37-67。
 
系統版面圖檔 系統版面圖檔