(34.204.201.220) 您好!臺灣時間:2021/04/19 17:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:梁鐵籌
研究生(外文):Tie-Chou Liang
論文名稱:矽奈米線電晶體壓阻性質與低頻雜訊分析
論文名稱(外文):Study on Piezoresistive Properties and Low Frequency Noise Characteristics of Silicon Nanowire Transistors
指導教授:康定國康定國引用關係
指導教授(外文):Ting-Kuo Kang
口試委員:吳忠義陳耀煌葉義生王納富康定國
口試委員(外文):Chung-Yi WuYau-Hwang ChenYi-Shy YehNa-Fu WangTing-Kuo Kang
口試日期:2013-06-27
學位類別:碩士
校院名稱:正修科技大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:86
中文關鍵詞:矽奈米線壓阻性質低頻雜訊
外文關鍵詞:Silicon Nanowire TransistorsPiezoresistive PropertiesLow Frequency Noise
相關次數:
  • 被引用被引用:0
  • 點閱點閱:113
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
矽奈米線電晶體壓阻性質與低頻雜訊分析
研究生:梁鐵籌 指導教授:康定國博士
正修科技大學電子工程研究所
摘 要
本論文主要是針對矽奈米線電晶體的壓阻性質與其低頻雜訊量測分析這兩部分做研究與討論。首先是探討矽奈米線電晶體的壓阻性質,也就是使用四點式晶圓彎曲技術對矽奈米線施加外部單軸向的機械應力,並利用應變規的變化量來直接測得矽奈米線所受到的應力大小,並且萃取出矽奈米線電晶體的壓阻係數為46×10-11 Pa-1以及應變計數值為65,這個數值相當接近矽基塊的壓阻性質。

第二部份則是對矽奈米線電晶體進行低頻雜訊量測及分析,也就是運用上半部份我們所萃取到應變計數值,以及我們量測到的雜訊大小,進而評估低頻雜訊分析中的訊雜比值,以及觀察關係奈米線電晶體施加不同的應力後壓阻性質改變與雜訊振福的關係,進而瞭解矽奈米線晶體在施加應力後低頻雜訊的物理機制。

Study on Piezoresistive Properties and Low Frequency Noise Characteristics of Silicon Nanowire Transistors
Student: Tie-Chou Liang Advisor: Ting-Kuo Kang
Department of Electronic Engineering
Cheng Shiu University
Kaohsiung County, Taiwan, Republic of China
Abstract
In this thesis is to study the piezoresistive properties of silicon nanowire transistors and its low frequency noise characteristics . Firstly, we discuss the piezoresistive properties of SiNWFETs through a simple four-point bending technique (4PB). The 4PB can apply an external uniaxial mechanical stress on SiNWFETs. The magnitude of mechanical stress can be directly measured by a foil strain gauge mounted on the surface of SiNWFETs. The piezoresistive coefficient(π) of 39×10-11 Pa-1 and gauge factor(GF) of 65 for SiNWFETs can be obtained. The π and GF appear to be consistent with the piezoresistive properties of SiNWFETs.

The second part is to explore the low frequency noise characteristics of SiNWFETs. Based we extracted into the strain gauge values and the noise amplitude (A), thereby obtaining the SNR value of the noise analysis. And then we observed relationship between SiNW’s resistance changes and Low-frequency noise magnitude when we applied stress to the SiNWFETs. Finally we understand the physical mechanism of Low-frequency noise in SiNWFETs can be changed when the stress is applied to SiNWFETs.

目錄
論文摘要(中文) Ⅰ
論文摘要(英文) Ⅱ
致謝 Ⅲ
目錄 Ⅴ圖目錄 Ⅶ
表目錄 Ⅸ第一章 緒論
1-1 研究背景與動機 1
1-2 論文架構 7
第二章 矽奈米線
2-1 矽奈米線製程 9
2-2 矽奈米線電性量測 15
第三章 低頻雜訊-應力量測系統
3-1 低頻雜訊量測系統 18
3-2 應力量測系統 21
3-3 有限元素法應力量測模擬 27
3-4 低頻雜訊-應力量測系統 28
第四章 矽奈米線電晶體之壓阻性質
4-1 矽奈米線電晶體結構 30
4-2 矽奈米線電晶體壓阻性質 32
4-3 矽奈米線電晶體應變計數值 40
第五章 矽奈米線電晶體雜訊量測與分析
5-1 矽奈米線電晶體低頻雜訊量測 48
5-2 矽奈米線電晶體SNR定義與公式 52
5-3 矽奈米線電晶體雜訊量測分析 56
第六章 結論與未來展望
6-1 結論 68
6-2 未來展望 70
參考文獻 72

參考文獻
[1] 楊忠諺,葉源益”乾式蝕刻於矽微加工及微機電方面之應用”毫微米通訊, PP11-17.
[2] James M. Bustillo et al., Surface Micromachining for Microelec- tromechanical Systems , Proceedings of the IEEE, vol. 86, pp.1552-1574, August. 1998.
[3] Rongrui He et al.,“Giant Piezoresistance Effect in Silicon Nanowires”,Nature Nanotechnology ,vol.1, pp.42-46, October.2006.
[4] 孫郁興,“奈米科技史及其展望”, 中華科技史學會會刊第八期,pp. 43-60, 1 月. 2005.
[5] T. Ghani et al.,“A 90nm High Volume Manufacturing Logic Technology Featuring Novel 45nm Gate Length Strained Silicon,IEDM pp. 978-980, 2003.
[6] 張景學,半導體製程技術文京圖書公司
[7] 李世鴻,積體電路製程技術五南圖書公司
[8] Yasutada Tanimoto et al., “Characteristics of Polycrystalline Si NanoWire Piezoresistors”,IEE Japan, vol.121, pp. 209-214,2001
[9] Alan Colli et al.,“Nanowire Lithography on Silicon”, Nano Letters , vol. 8, pp.1358-1362, 2008.
[10] Ting-Kuo Kang,“ A Simple Four-Point-Bending Setup for Measurement of Mechanical Stress on Silicon Field-Effect Transistors”,Measurement, pp. 871-874, 2011.
[11] C. Gallon et al., “Electrical Analysis of External Mechanical Stress Effects in Shortchannel MOSFETs on (0 0 1) Silicon”, Solid-State Electron, pp. 561-566, 2004.
[12] Ting-Kuo Kang.,”The piezoresistive effect in n-type junctionless silicon nanowire transistors.IOP Publishing Nanotechnology 23(2012) (6pp).
[13] Yi-Wei Lin et al., “Is There Always Performance Overhead for Regular Fabric?”, IEEE, pp.557-562 , 2008.
[14] J. P. Duarte et al.,“Simple Analytical Bulk Current Model for Long-Channel Double-Gate Junctionless Transistors ” , IEEE
Electron Device Letters, vol.32, no.6, pp.704-706, Jun.2011.
[15] D. Jimenez, et al., “Continuous Analytic I–V Model for Surroun
ding-Gate MOSFETs”,IEEE Electron Device Letters, vol.25, no.8,
pp.571-573, August. 2004.
[16] B. Soree et al., “Silicon Nanowire Pinch-Off FET: Basic Operation
and Analytical Model”, Proc. Ultimate Integr. Silicon , pp.
245-248, 2009.
[17] Jean-Pierre Colinge, “Nanowire Transistors Without Junctions”
Nature Nanotrchnology, vol.5, pp.225-229, 2009.
[18] Jiun-Wei Tzeng,Study on Electromechanical Properties of Silicon
Nanowires and Nanowire FETs
[19] S. E. Thompson et al., “A 90-nm Logic Technology Featuring
Strained-silicon,”IEEE Trans. Electron Devices, vol. 51, p. 1790,
2004
[20] Tomas Helbling,Cosmin Roman,and Christor ferhierold,”Signal-to-noise Ratio in Carbon Nanotube ElectromechanicalPiezoresistive Sensors”NANOLETTER.10,3350-3354.2010
[21] Shahed Reza, Gijs Bosman, M. Saif Islam, Theodore I. Kamins, Shashank Sharma, and R. Stanley Williams, ” Noise in Silicon Nanowires” IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 5, NO. 5, SEPTEMBER 2006
[22] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties
of Carbon Nanotubes. London, U.K.: Imperial College Press, 1998.
[23] S. Sharma, et al.,Structural characteristics and connection mechanism of goldcatalyzed bridging silicon nanowires,” J. Cryst. Growth, vol. 280, pp.562–568, 2005.
[24] F. N. Hooge, “1=f noise sources,” IEEE Trans. Electron Devices, vol.41, no. 11, pp. 1926–1935, Nov. 1994.
[25] A. Van der Ziel, Noise in Solid State Devices and Circuits. New York: Wiley, 1986.
[27] Pushpapraj Singh, et al,”Tunable piezoresistance and Noise in gate-all-around nanowire field-effect-transistor,APPLIED PHYSICS LETTERS 100.063106(212).
[28] Pushpapraj Singh, et al.Piezoresistive Sensing Performance of tionless Nanowire FET, IEEE ELECTRON DEVICE LETTERS, VOL. 33, NO. 12, DECEMBER 2012
[29] Sang-Hoon Bae.,et.Al. “Graphene based transparent strain sensor” ElSEVIER.97[2003]371-376

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔