跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/27 09:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王國忠
研究生(外文):Wang-kuo chung
論文名稱:下肢外骨骼復健機構開發
論文名稱(外文):Development of Lower Extremity Exoskeletons Rehabilitation Mechanism
指導教授:王進猷王進猷引用關係龔皇光龔皇光引用關係
指導教授(外文):Wang, ChinyuHuang-Kuang Kung
口試委員:王進猷龔皇光沈士育李政男王心德
口試委員(外文):Wang, ChinyuHuang-Kuang KungShen,ShihyuJeng-Nan LeeHsin-Te Wang
口試日期:2016-07-18
學位類別:博士
校院名稱:正修科技大學
系所名稱:機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:96
中文關鍵詞:足底壓力感知器外骨骼控制系統
外文關鍵詞:Flexiforce sensorexoskeletonscontrol system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:286
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本論文開發客製化下肢復健機構設計,以協助中風、年老退化、車禍病患的復健需求者,照護復健如自然步態、坐式、立姿、下蹲等特定復健的摩擬人形姿步動作,以達到逐漸下肢復健康復的工作。
透過Vicon攝影鏡頭之運動捕捉動態、分析之設備,完成患者觀察前的紀錄動態與分析,以做為參考客製化機構的幾何設計、與患者做復健動作時,髖關節、膝關節、踝關節及步進伺服馬達、諧波行星齒輪組、足底壓力感測器之間相對運動規律偵測參數。其次,透過設計參數軟體完成助行機構系統的幾何設計、與機構、機件的尺寸客製化設計。再透過動態分析軟體,並將機構、機件之間運動的關係建構正確的接觸 (contact pair) 設定,以完成復健助行機構的運動學(kinematics) 與動力學 (dynamics) 模擬與追蹤分析。最後,再將上述的所有機構,以兩組諧波行星齒輪減速機(harmonic drive)、Maxon 馬達、GALIL多軸運動控制卡,完成單肢兩軸復健助行機構的機電整合系統開發。
本論文分別以(1) LifeMod 生物力學軟體,建構摩擬人形姿步客製化的使用者參數。(2)依軟體之動態追蹤分析所求得髖與膝關節的負荷載重條件,做為步進伺服馬達的選用匹配功率的依據。(3)藉由足底壓力感測板、與人體姿態各種感測器,分別完成復健動作的動態監控與動態摩擬功能。透過上述的設計規劃,可以縮短設計研製週期、提升復健助行機構品質及附加功能價值、增進研發產品的精確度等,有助於產、學、醫界研發復健助行產品的實用性。

This study developed a customized lower extremity rehabilitation mechanism to assist the rehabilitation needs of stroke patients, age degradation patients and injured patients due to accidents. The rehabilitation care includes walking, sitting, standing, squatting and other common postures or movements of a person that could gradually improve the movements of their lower extremity.
Through the motion capturing and analysis of the Vicon camera lens, this study completed the recording and analysis of the patient’s dynamic activities before the observation to serve as a reference for creating a customized mechanism for the geometrical design and rehabilitation movements of the patients such as hip, knee and ankle movements, and the relative movement detection parameters among the step-servo motor, harmonic gears set and plantar pressure sensor. Next, this study completed geometric design and mechanism, and the customized size design of the components of the motion support system using a design parameter softwareThen, construct the correct contact pair setting between the kinematics of the mechanism and component by means of the motion analysis software to complete the kinematics and dynamics simulation and tracking analysis of the rehabilitation support mechanism. Lastly, it completed the mechatronics integrated system development of the single limb-two axis rehabilitation support mechanism by joining the two sets of harmonic drive, Maxon motor and GALIL multi-axis motion control card to the mechanism mentioned above.
This study separately (1) construct the user parameter of customized posture and movement simulation using LifeMod biomechanical software, (2) use the hip and knee load conditions obtained from the dynamic tracking analysis software as the basis for matched power of the step-servo motor, and (3) complete the motion control and simulation functions of the rehabilitation movements through plantar pressure sensing plate and various body posture sensors. Through the above-mentioned design plan, we can shorten the design and development cycles, improve quality and value-added functions, and enhance the accuracy of the product to improve the usability of the rehabilitation support product for the benefit of the industry, academia, and medical industry.


摘要..................................................... i
Abstract................................................ ii
誌謝..................................................... iii
目錄..................................................... iv
表目錄................................................... vii
圖目錄.................................................. viii
第1章 緒論.................................................1
1-1 研究背景與意義..........................................1
1-2 本研究的重要性..........................................2
1-3 國外的研究..............................................6
1-3-1 國內研究 ..........................................17
1-4 下肢外骨骼機器人的關鍵技術...............................18
1-5 主要研究內容..........................................19
第2章 下肢骨骼運動之捕捉原理與分析...........................20
2-1 下肢體運動原理........................................20
2-2 下肢復健方法研究......................................23
2-2-1 中風的康復評斷及治療方法..............................23
2-2-2 脊椎損傷的康復評斷及治療方法..........................25
2-3 下肢外骨骼機構的運動學分析.............................25
2-3-1 運動學分析..........................................26
2-3-2 正運動求解..........................................26
2-3-3 逆運動求解..........................................30
2-3-4 Jacobian矩陣.......................................31
2-3-5 角加速度分析........................................33
2-4 以RecurDyn執行運動分析................................34
2-5 運動捕捉分析系統......................................36
第3章 下肢骨骼意圖向量之分析與感測 ........................43
3.1 下肢外骨骼運動定義....................................43
3.2 轉向轉速分配......................................... 45
3.3 下肢踝關節壓力感測裝置................................58
第4章 復健機構之設計......................................60
4.1 復健機構設計流程.....................................60
4.2 機構設計關鍵技術.....................................63
4.2.1 運動捕捉設備........................................63
4.2.2 生物力學軟體模擬....................................63
4.2.3 復健機構設計........................................65
4.2.4 機構的動力學模擬.....................................66
4.2.5 肢體二維壓力感測器...................................67
4.2.6 足底測力板..........................................69
4.3 復健機構與機電系統...................................70
4.3.1 馬達規格............................................70
4.3.2 減速機規格..........................................70
4.3.3 編碼器..............................................71
4.3.4 驅動器..............................................71
4.3.5 多軸控制器...........................................71
4.3.6復健原型機............................................73
第5章 復健驅動齒輪機構......................................73
5.1 諧波齒輪原理應用分析....................................73
5.2 零齒差微行星諧波齒輪的研究...............................77
5.3 非圓齒輪的共軛理論.....................................79
5.4 數化立方仿線擬合.......................................81
5.5 設計元素與系統組裝圖...................................83
5.6 諧波齒輪應力分析......................................86
第6章 結論與展望..........................................87
6.1 結論................................................87
6.2 未來展望.............................................88
參考文獻..................................................90

1】黃仲宏,經濟部智慧自動化產業期刊,2015,3,8-18。
【2】國家發展委員會:
http://ws.ndc.gov.tw/Download.ashx?u=LzAwMS9hZG1pbmlzdHJhdG9yLzEwL3JlbGZpbGUvNTU2Ni83MjgyLzBlZDZiMDE1LThmM2UtNGVkMC04YjM2LWEwMTgxZDNhMjBlYy5wZGY%3D&n=5YWo55CD5Lq65Y%2Bj6ICB5YyW5LmL54%2B%2B5rOB6IiH6Lao5YuiXzIwMTMxMC5wZGY%3D&icon=..pdf
【3】竹科生醫園區電子報,全球居家健康照護之區域市場分
析:
http://history.n.yam.com/greatnews/politics/20150501/20150501007973.html
【4】B.J. Makinson, General Electric CO. Research and Development Prototype for MachineAugmentation of Human Strength and Endurance, Hardiman I Project, GeneralElectric Report S-71-1056 [J], Schenectady, NY, 1971.
【5】Adam Zoss, H. Kazerooni, Andrew Chu.On the Mechanical Design of the Berkeley LowerExtremity Exoskeleton (BLEEX)[C], IEEE/RSJ International Conference on IntelligentRotbots and Systems, 2005: 3132-3139
【6】哈曼迪外骨骼:
http://cyberneticzoo.com/man-amplifiers/1966-69-g-e-hardiman-i-ralph-mosher-american/
【7】麻省理工外骨骼:
http://big5.cri.cn/gate/big5/ gb.cri.cn/3821/2004/08/23/107@
275849.htm
【8】陳峰,“可穿戴型助行機器人技術研究[D] ”,中國科學技術大學博士學位論文,2007.5。
【9】牛彬,“可穿戴式的下肢步行外骨骼控制機理研究與實現[D] ”,浙江大學碩士學位論文,2006.1:15-65。
【10】神奈川工業大學開發的助行外套:
http://202.38.93.40:8800/openfile?dbid=72&objid=56_56_54_55_49&flag=free
【11】Jerry E.Pratt, Benjamin T.Krupp, Christopher J.Morse, The RoboKnee. An Exoskeleton for Enhancing Strength and Endurance During Walking[C], Proceedings of the 2004IEEE International Conference on Robotics & Automation, New Orleans, LA, April2004: 2430-2435
【12】Adam Zoos, H. Kazerooni, Andrew Chu.On the Mechanical Design of the Berkeley LowerExtremity Exoskeleton (BLEEX). IEEE Intelligent Robots and Systems Conference,August, Edmunton, 2005.3465-3472
【13】H. Kazerooni, J. L. Racine, Huang, R. Stegre.On the Control of
the Berkeley Lower Extremity Exoskeleton (BLEEX). Proc. of the
2005 IEEE Intelligent Robots and Systems Conference,August,
Edmunton, 2005.3465Edmunton, 2005.3465Robots and Systems
Conference,August, Edmunton, 2005.3465-3472
【14】Adam Zoss, H. Kazerooni, Andrew Chu. Biomechanical Design of the Berkeley LowerExtremity Exoskeleton (BLEEX). IEEE/ASME Trans. on Mechatronics,2006, 11(4): 128 -138
【15】Kazerooni H., Stegre R., Huang L. Hybrid Control ofthe Berkeley Lower ExtremityExoskeleton BLEEX. Int. J. of Robotics Research, 2006, 25(5): 561 -573
【16】Zoss Adam, Kazerooni, H, Design of an electrically actuated lower extremityexoskeleton, Advanced Robotics, 2006,v20( 9): 967-988
【17】Zoss Adam, Kazerooni H. Architecture and hydraulics of a
lowerextremityexoskeleton, American Society of Mechanical Engineers, Dynamic Systemsand Control Division (Publication) DSC, 2005, 74(2) 1447PART B:1447-1455
【18】伯克萊下肢外骨骼一代:
http://www.statemaster.com/encyclopedia/Artificial- powered-exoskeleton
【19】伯克萊下肢外骨骼二代:
http://big5.stcsm.gov.cn/gate/big5/images.stcsm.gov.cn/
/news/image/20040310-2.jpg
【20】伯克萊下肢外骨骼二代:
http://bleex.me.berkeley.edu/wp-content/uploads/hel- media/images/CV/Soummya/S1-BLEEX.jpg
【21】Kota Kasaoka , Yoshiyuki Sankai. Predictive Control Estimating
Operator’s Intention for Stepping up Motion by Exo-Sckeleton Type Power Assist System HAL[C], Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robotsand Systems , Maui, Hawaii, USA, Oct.29-Nov.03, 2001: 1578-1583
【22】S. Lee, Y. Sankai. Power Assist Control for Walking Aid with
HAL-3 Based on EMG and Impedance Adjustment around Knee Joint[C], Proceedings of the 2002 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, Lausanne, Switzerland, October
2002: 1499-1504
【23】Hiroaki Kawamoto, Shigehiro Kanbe. Power Assist Method for HAL-3 Estimating Operator’s Intention Based on Motion Information[C], Proceed125ing of the 2003IEEE International Workshop on Robots and Human Interactive Communication,Millbrae, California, USA, Oct.
31-Nov. 2, 2003: 67-72
【24】Hiroaki Kawamoto, Suwoong Lee, Shigehiro Kanbe, Yoshihuki Sankai.Power AssistMethod for HAL-3 using EMG-based Feedback Controller[C], IEEE InternationalConference on System, Man and Cybemetics, 5-8 Oct. 2003: 1648-1653
【25】Hiroaki KAWAMOTO, Yoshiyuki SANKA I. Power Assist Method Based on Phase SequenceDriven by Interaction between Human and Robot Suit[C], Proceedings of the 2004IEEE International Workshop on Robot and Human Interactive Communication,Kurashiki, Okayama Japan, Sep.20-22, 2004:491
【26】築波大學研製的HAL-3混合輔助腿:
http://big5.cri.cn/gate/big5/gb.cri.cn/3821/2004/08/23/107@
275849.htm
【27】Kama Moto H,Sankai Y.Comfortable power Assist control method for walking aid byHAL-5,IEEE Intel Conf on SMC.TP1B2,2002,880-912
【28】Kaze rooni H. Exoskeleton for human power augmentation. IEEE/RSJ InternationalConference on Intelligent Robots and Systems ,2005:3120-3125
【29】HAL-5外骨骼機械腿:
http://www.yigoonet.com/article/2249039.html
【30】日本東北大學Wearable Walking Helper-1:
http://www.smpp.northwestern.edu/icorr2005/proceedingscd/
pdffiles/papers/ThA01_01.pdf
【31】本田公司研發的可穿行走輔助工具:
http://www.wired.com/2009/04/robolegs/
【32】S. Kawai, K. Naruse,H. Yokoi, Y. Kakazu. A Study for Control of Power AssistDevice. Proc. of the 2004 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,2004.10,2283
【33】ReWalk下肢步行助行器:
http://www.medgadget.com/2014/06/rewalk-exoskeleton-system-cleared-by-fda-for-home-use.html
【34】余暉,“可穿戴式三自由度踝足運動康複外骨骼系統研究與開
發[D]”,浙江大學碩士學位論文.2012.1。
【35】Yang Can-Jun, Niu Bin, Chen Ying. Adaptive Neuro-Fuzzy Control Base Development ofa Wearable Exoskeleton Leg for Human Walking Power Augmentation. Proc. of the 2005IEEE/ASME Int. Conference on Advanced Intelligent Mechatronics, 2005.7, 462。
【36】張傑,“腦卒中癱瘓下肢外骨骼康複機器人的研究[D] ”,浙江大學博士論文. 2007.5。
【37】夏振濤,“助行訓練機器人系統設計及步態控制實驗研究[D] ”,哈爾濱工程大學碩士論文2009.3。
【38】戴紅,“人體運動學[M] ”,北京:人民衛生出版,2008:37-105
【39】合肥智能機械研究所研製的可穿戴助行機器人:
http://ee.ofweek.com/2013-06/ART-8140-2817-28688865_4.html
【40】工研院開發的輕量化行動輔助機器人:
https://www.itri.org.tw/chi/Content/MsgPic01/Contents.aspx?SiteID=1&MmmID=620605426112545320&MSid=620613177373775136
【41】人體下肢骨骼結構:
http://www.360doc.com/content/12/0326/12/2198695_197802537
.shtml
【42】SheldonR.Simon,等著,嚴波濤,劉宇譯,人體運動學。
【43】Brunnstrom stage:
http://blog.xuite.net/wdt5861/twblog/130104774%E4%BD%
95%E8%AC%82Brunnstrom+stage
【44】陳景藻主編,“康複醫學”,高等教育出版杜,2001。
【45】AMTI force plate:
http://www.graphicdevices.com/amti.asp
【46】Maxon EC90e規格表:
http://www.treffer.com.br/produtos/maxon/motores/pdf/189.pdf
【47】減速機規格:
http://www.harmonicdrive.net/products/gear-units/simplicity-
gear-units/shd-2sh/shd-20-160-2sh
【48】編碼器:
http://www.maxonmotor.com.tw/maxon/view/news/ MEDIEN
MITTEILUNG-mile6
【49】ELECTROMATI諧波齒輪手冊:
http://www.electromate.com
【50】micromotion諧波齒輪:
http://www.micromotion.de/englisch/support/drawings1.htm

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top