(3.239.56.184) 您好!臺灣時間:2021/05/13 12:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:朱吉皇
論文名稱:機械手臂運動控制研究
論文名稱(外文):The Study of Robot Arm Control
指導教授:陳茂林陳茂林引用關係
指導教授(外文):Mao-Lin Chen
學位類別:碩士
校院名稱:建國科技大學
系所名稱:電機工程系暨研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:91
中文關鍵詞:機器人機械手臂控制神經網絡自適應控制手指關節
外文關鍵詞:robotsrobot controlNeural network adaptive controlfinger joints
相關次數:
  • 被引用被引用:1
  • 點閱點閱:123
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著世代的改變與技術發展對於機器人的應用更是不斷的擴張,但要提升機器人有仿真功能尚有部分需要實現,就是仿真人類的機械手臂運動,期使讓機械手臂控制得以更順暢與抓取更是靈活,在仿真機械手臂的控制上將顯得更重要。因此本論文設計的目的就是應用神經網絡自適應控制來驅使機械手臂仿真動作,讓機械手臂在手指關節運動與手臂伸張得以順利實現,經實驗驗證機構設計神經網絡自適應控制是可行的,對機構控制的抖動也可改善,讓控制得以穩定。



As generations change and technological development for robot applications is constantly expanding, but to enhance the robot has simulation capabilities are still part of the need to achieve, that is, the mechanical simulation of human arm movement, the control of the robot arm to allow smoother and grip take more flexible control of robot in the simulation will become more important. Therefore, the purpose of this thesis is the application of Neural network adaptive control for driving robot simulation action, so mechanical arm and arm movement in the joints of the fingers can be done smoothly, the experimental verification mechanism design Neural network adaptive control is feasible for organizations to control the jitter can be improved, so that the control can be stabilized.



誌謝--------------------------------------------------------Ⅰ
中文摘要----------------------------------------------------Ⅱ
英文摘要----------------------------------------------------Ⅲ
目錄------------------------------------------------------IV
圖目錄------------------------------------------------------V
表目錄-----------------------------------------------------VI
第一章 緒論-------------------------------------------------1
1.1 研究背景------------------------------------------------1
1.2 研究動機與目的-------------------------------------------2
1.3 論文架構------------------------------------------------2
第二章 機械手臂運動分析----------------------------------------4
2.1 機械手臂發展---------------------------------------------4
2.2 機械手動力學方程------------------------------------------5
2.2.1 速度的計算--------------------------------------------7
2.2.2 動能和位能的計算----------------------------------------8
2.2.3 動力學方程的推導---------------------------------------12
2.3 抓取靜力學---------------------------------------------15
2.3.1 抓取約束和特性----------------------------------------17
2.4 物體的變換及逆變換---------------------------------------19
2.4.1 物體位置描述------------------------------------------19
2.4.2 幾次變換的逆變換---------------------------------------20
2.4.3 變換方程初步------------------------------------------21
2.5 通用旋轉變換--------------------------------------------22
2.5.1 通用旋轉變換工式---------------------------------------22
2.5.2 等效轉角與轉軸----------------------------------------24
第三章 神經網絡自適應控制-------------------------------------27
3.1 空間直角座標與關節角位置的轉換-----------------------------27
3.2 機械手的神經網絡建模-------------------------------------28
3.3 控制器的設計--------------------------------------------30
第四章 實驗驗證---------------------------------------------34
4.1 物體運動學---------------------------------------------34
4.1.1 通用形式的多指操作運動學--------------------------------34
4.1.2 手指結構分析------------------------------------------35
4.1.3 機器人手指的結構設計-----------------------------------36
4.2 機械手指的設計目標---------------------------------------40
4.2.1 機器人手----------------------------------------------------------41
4.2.2 手指正運動學分析---------------------------------------42
4.2.3 手指逆運動學分析---------------------------------------44
4.3 模擬驗證-----------------------------------------------45
4.4 MATLAB中的各指節軌跡仿真及驗證----------------------------49
4.5 機械手臂的動作驗證---------------------------------------51
第五章 結論與未來展望----------------------------------------56
5.1 結論--------------------------------------------------56
5.2未來展望------------------------------------------------56
參考文獻---------------------------------------------------58
個人簡歷---------------------------------------------------62

參考文獻
[1]何平,“基于物體阻抗的機器人靈巧手控制”,哈爾工業大學,博士論文,
2004。
[2]高海昌、馮博琴、朱利,“智能優化算法求解TSP問題”,控制與決策,PP.241~247,2006.6
[3]劉金琨, “智能控制”,北京,電子工業出版社,2005.
[4]里查德.摩雷,李澤湘,夏恩卡.薩斯特里,機器人操作的數學導論.徐則良,錢
瑞明澤.機械工業出版社1988。
[5]姜力,“具有力感知功能的機器人靈巧手手指及控制的研究”,哈爾濱工業大
學,博士論文,2001。
[6]劉伊威,“DLR/HIT仿人靈巧手系統及手指柔順控制的研究”,哈爾濱工業
大學,博士論文2006。
[7]樊紹威,“類人型五指靈巧手的設計及抓取規劃的研究”,哈爾濱工業大學,
博士論文,2009。
[8]蘭天,“多指仿人機器人靈巧手的同步控制研究”,哈爾濱工業大學,博士
論文,2009。
[9]K. Ikeda, H. Tanaka, T. Zhang, M. Minami and Y. Mae, “On-line Optimization of Avoidance Ability for Redundant Manipulator.” Proceeding of the 2006 IEEE/RSJ, International Conference on Intelligent Robots and Systems, Beijing, China, 2006, pp.592-597.
[10]F. Padula and V. Perdereau, “A New Pseudoinverse for Manipulator Collision Avoidance.” International Federation of Automatic Control. Milano, 2011, pp. 14687-14692.
[11]M. V. Weghe, D. Ferguson, and S. Srinivasa, “Randomized path planning for redundant manipulators without inverse kinematics,” IEEE-RAS International Conference on Humanoid Robots, November, 2007, pp. 477-482.
[12]B. Lacevic, P. Rocco and M. Strandberg, “Safe motion planning for articulated robots using RRTs.” Information, Communication and Automation Technologies, 2011 IEEE, International Symposium on, Oct, 2011.
[13]D. Berenson, S. Srinivasa, D. Ferguson, A. Collet, and J. Kuffner“Manipulation planning with workspace goal regions,” IEEE International Conference, on Robotics and Automation, Kobe, Japan, 2009.
[14]S. Kim, C. Kim, and J.H. Park, ”Human-like arm motion generation for humanoid robots using motion capture database”, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006.
[15]K. Kim, J. Lee, S. Kim, J. Lee, M. Jeong, C. Kim, and B. You, “Coordinated Task Execution by Humanoid Robot.” ICROS-SICE, International Joint Conference, 2009, pp. 3496-3503.
[16]S. Calinon and A. Billard, “Learning of Gestures by Imitation in a Humanoid Robot.” Cambridge, U.K.: Cambridge Univ. Press, 2005. In Press.
[17]M. Ruchanurucks and S. Nakaoka, “Offline and Online Trajectory Generation with Sequential Physical Constraints.” Proceeding of the 2008 IEEE International Conference on Robotics and Biomimetics, Bangkok, Thailand, February 21-26, 2009.
[18]B. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot learning from demonstration,” Robotics Automation System, vol. 57, no. 5, pp. 469–483, 2009.
[19]H. I. Lin and C. L. Chen, “A Hybrid Control Policy of Robot Arm Motion for Assistive Robots.” Proceeding of the IEEE International Conference on Information and Automation, Shenzhen, China, June 2011. pp. 163-168.
[20]P. Azad, T. Asfour, and R. Dillmann, “Toward an Unified Representation for Imitation of Human Motion on Humanoids.” IEEE International Conference on Robotics and Automation (ICRA), 2007.
[21]A. Thobbi and W. Sheng, “Imitation learning of hand gestures and its evaluation for humanoid robots.” Proceeding of the IEEE International Conference on Information and Automation, Harbin, China, 2010, pp. 60–65.
[22]N. Lehment, D. Arsic, M. Kaiser, and G. Rigoll. “Automated pose estimation in 3D point clouds applying annealing particle filters and inverse kinematics on a GPU.” CVPR Workshop, 2010.
[23]P. L. Cheng, “Joint rotation between two attitudes in the spherical rotation coordinate system.” Journal of Biomechanics, Oct 2004, vol. 37, no. 10, pp. 1475–1482.
[24]B. Almasri and F. B. Ouezdou, "Human-Like Motion Based On a Geometrical Inverse Kinematics and Energetic Optimization" 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems Acropolis Convention Center Nice, France, Sept, 22-26, 2008 , pp.640-646.
[25]A. Aristidou and J. Lasenby, “FABRIK: a fast, iterative solver for the inverse kinematics problem.” Graphical Models 73(5), 2011, pp. 243–260.
[26]G. Antonelli, F. Arrichiello, and S. Chiaverini, “Stability analysis for the null-space-based behavioral control for multi-robot systems.” Proceeding 47th IEEE Conference Decision Control 8th Eur. Control Conference, Cancun, Mexico, Dec. 2008, pp. 2463–2468.
[27]Vossoughi R ,Dinath M.Robot finger stiffness control in the presence of mechanical non-linearities.Transactions of the ASME,Journal of Dynamic Systems,Mesurement and Con-trol,1988。
[28]Haidacher S,Burrerfass J,Fischer Met al.DLR hand II:Hard-and software
Architecture for information processing.Proceedings of IEEE Internaton
Conference on Robotics and Automation ,Taibei,2003。
[29]Kaeasaki H,Komatsu T,Uchiyama K. Dexterous anthropomorphic robot
hand with dis-tributed tactile sensor:Gitu hand II.IEEE/ASME T Transactions on Mechatronics,2002。
[30]Namiki A,Imai Y,Ishikawa M,et al.Development of a high-speef Multifingered hand sys-tem and its application to catching.Proceedings of IEEE International Conference on Intel-lingent Robors and Systems,Las Vegas,2003。
[31]Phoka T,Niparnan N,Sudsang A.Planning optimal force-closure grasps for
curved objects by genetic algprithm.Proceedings of IEEE Confernce on Robotics,Automation and Mechatronics,Bangkok,2006。
[32]Elkoura G,Singh K.Handrix:Animating the hand.Proceedings of ACM
SIG-GRAPH/Eutographice Symposium on Computer.Animation,san Diego,
2003。
[33]Li,Y,Pollard N.A shape matching algorithm for synthesizing human-
Like enveloping grasps.Proceegings of IEEE-RAS International Conference
on Humanoid Robots,Tsukuba,2005。
[34]Aleotti J,Caselli S.Grasp recognition in virtual reality for robot pregrasp planning by demonstration.Proceedings of IEEE International
Conference on Roboticsand Automa-tion,Orlando,2006。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔