(3.236.214.19) 您好!臺灣時間:2021/05/07 11:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:徐黎榮
論文名稱:磨料噴射加工法對SKD61精加工之研究
論文名稱(外文):The study of precision maching for SKD61 by Abrasive Jet Maching method
指導教授:高文顯高文顯引用關係蔡逢哲蔡逢哲引用關係
學位類別:碩士
校院名稱:建國科技大學
系所名稱:自動化工程系暨機電光系統研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:65
中文關鍵詞:磨料噴射拋光田口品質工程
外文關鍵詞:abrasive jet machining(AJM)polishingTaguchi Method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:2
本研究主要利用磨料噴射加工法(Abrasive Jet Machining,AJM)對銑削表面進行加工,探討對SKD61模具鋼加工及銑削表面的拋光改善效果。
實驗結果發現由田口實驗所獲得之最佳參數組合,可將表面粗糙度0.76μm Ra (4.57μm Rmax)的銑削加工面降至0.21μm Ra (0.92μm Rmax),改善率達72%,表面呈現近似於鏡面反射的效果。另外研究亦發現表面改善速率會隨著不同初始表面粗糙度與磨料粒徑改變。由材料移除量量測值可判斷加工後表面是否已達到磨料加工極限或表面硬化極限,其中表面硬化極限產生原因除了塑性變形所導致的硬化層之外,批覆材混合SiC 磨粒,所以SiC在進行噴射拋光時大量嵌入工件表面,由EDX 定量分析結果,表面SiC含量有明顯增加,且表面微硬度亦會增加。

In this study, the use of abrasive jet machining method (Abrasive Jet Machining,AJM) surface machining on milling explore on SKD61 mold steel processing and milling the surface of the polishing improvement.

From the experimental results find that use the best combination of parameters by Taguchi Method ,the surface roughness value can drop from 0.76 μmRa to 0.21 μmRa and 4.57 μmRmax to 0.92 μmRmax, the improvement rate up to 72% and the surface is similar to a reflection mirror. Furthermore, study also investigated the surface characteristic of workpiece after machining. From EDX quantitative analysis result reveal that use the SiC abrasive after AJMPM, the SiC content on workpiece surface is going to increase obviously and micro hardness of surface will also increase because of the surface insertion effect (SiC particles).

摘要 I
Abstract II
總目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 2
1-3 研究方法 4
1-4 本論文之構成 4
第二章 文獻回顧 6
2-1磨料噴射加工法 6
2-2 ANSYS模擬分析 9
2-3田口實驗計畫法 11
第三章 實驗原理與設備 13
3-1磨料噴射加工法基本原理 13
3-1-1 磨料噴射對延性工件材料移除機制 13
3-2 田口品質工程基本原理 14
3-3 ANSYS模擬分析 17
3-3-1 分析軟體介紹 17
3-3-2實驗規劃與分析條件設定 19
3-4 實驗設備 19
3-4-1 加工設備 19
3-4-2 量測觀察設備 20
3-5 實驗材料 21
3-5-1 實驗前置準備 21
3-6實驗條件與實驗規劃 22
第四章 結果與討論 24
4-1 ANSYS模擬分析 24
4-2 磨料噴射加工法應用於銑削表面之改善 24
4-2-1田口品質工程分析最佳參數組合 25
4-2-2 Table移動速率對於銑削表面之影響 25
4-2-3 平台轉速對於銑削表面之影響 26
4-2-4 衝擊角度對於銑削表面之影響 26
4-2-5 加工高度對於銑削表面之影響 26
4-2-6 氣體壓力對於銑削表面之影響 27
4-2-7 複合磨料之重量混合比對於銑削表面之影響 27
4-2-8 表面特性探討 28
4-3 驗證實驗 29
4-4 磨料噴射加工法表面鏡面拋光結果 29
第五章 總結論 30
參考文獻 31

表目錄
表3-1自動磨料噴射拋光設備規格表 37
表3-2 SKD61模具鋼化學組織成份 37
表3-3 碳化矽化學組織成份 37
表3-4 硬脂酸鋅化學組織成份 37
表3-5 磨料使用號數與粒徑 37
表3-6 田口方法L18水準因子表 38
表3-7 L18直交表 38
表4-1 L18實驗結果 39
表4-2 水準因子反應表 39
表4-3 硬度量測之結果 40
表4-4 SKD61 surface成份分析 40
表4-5 AJMed surface成份分析 40
表4-6 驗證實驗結果 40

圖目錄
圖1-1實驗流程 41
圖3-1磨料噴射對脆性材料的去除機制 42
圖3-2磨料噴射對延性材料的去除機制 42
圖3-3 田口實驗計畫法實驗流程 43
圖3-4 模擬實驗規劃流程 44
圖3-5 模擬環境三視圖 44
圖3-6 Fluent Gambit 網格分割圖 45
圖3-7自動磨料噴射精微拋光系統組件圖 46
圖4-1 ANSYS模擬分析應力分佈圖 47
圖4-2 (a) 複合磨料#1000 SiC之表面粗糙度改善率及材料去除率 48
圖4-2 (b) 複合磨料#2000 SiC之表面粗糙度改善率及材料去除率 48
圖4-2 (c) 複合磨料#3000 SiC之表面粗糙度改善率及材料去除率 49
圖4-3 因子反應圖 49
圖4-4 Table移動速率於銑削表面之表面粗糙度改善率及材料去除率 50
圖4-5平台轉速對於銑削表面之表面粗糙度改善率及材料去除率 50
圖4-6衝擊角度對於銑削表面之表面粗糙度改善率及材料去除率 51
圖4-7衝擊角度與加工機制關係圖 51
圖4-8加工高度對於銑削表面之表面粗糙度改善率及材料去除率 52
圖4-9氣體壓力對於銑削表面之表面粗糙度改善率及材料去除率 52
圖4-10複合磨料之重量混合比對於銑削表面之表面粗糙度改善率及材料去除率 53
圖4-11不同表面硬度關係圖 53
圖 4-12噴射加工表面矽(Si)元素Mapping圖 54
圖4-13原始試片與驗證結果之比較 (a)實體比較圖 (b) 原始試片3000倍SEM圖 (c)驗證試片3000倍SEM圖 55
圖4-14磨料噴射拋光加工前後之工件表面形貌圖 56


參考文獻
1. 渡邊純二,「電子、光通訊用零件及結晶、陶瓷材料的超精密加工技術」,次世代磨粒加工技術研討會,中華民國磨粒加工學會,2000。
2. 蔡逢哲,「磨料噴射精微加工之研究」,國立中央大學機械工程學系博士論文,2008。
3. I.M. Hutchings, N.H. Macmillan and D.G. Rickerby, “Further studies of the oblique impact of a hard sphere against a ductile solid”, International Journal of Mechanical Sciences 23 (1981) 639–646.
4. E. Belloy, A. Sayah and M.A.M. Gijs, “Powder blasting for three-dimensional microstruturing of glass”, Sensors and Actuators A 86 (2000) 231–237.
5. P.J. Slikkerveer, P.C.P. Bouten, F.H. in’t Veld and H. Scholten, “Erosion and damage by sharp particles”, Wear 217 (1998) 237–250.
6. E. Belloy, S. Thurre, E. Walckers, A. Sayah and M.A.M.Gijs, “The introduction of powder blasting for sensor and microsystem applications”, Sensors and Actuators A 84 (2000) 330–337.
7. M.W. Sin, J.G. Song, “Study on the photoelectrochemical etching process of semiconducting 6H-SiC wafer”, Materials Science and Engineering B 95 (2002) 191–194.
8. H. Wensink, H.V. Jansen, J.W. Berenschot and M.C. Elwenspoek, “Mask materials for poeder blasting”, Journal of Micromechanics and MicroEngineering 10 (2000) 175–180.
9. H. Wensink, H.V. Jansen, J.W. Berenschot and M.C. Elwenspoek, “High Resolution Powder Blast Micromachining”, Micro Electro Mechanical Systems (2000) 769–774.
10. S. Schlautmann, H. Wensink, R. Schasfoort, M. Elwenspoek and A. Vandenberg, “Powder-blasting technology as an alternative tool for microfabrication of capillary electrophoresis chips withintegrated conductivity sensors”, Journal of Micromechanics and MicroEngineering 11 (2001) 386–389.
11. E. Belloy, A. Sayah and M.A.M. Gijs, “Oblique powder blasting for three-dimensional micromachining of brittle materials”, Sensors and Actuators A 92 (2001) 358-363.
12. M. Wakuda, Y. Yamauchi and S. Kanzaki, “Effect of workpiece properties on machinability in abrasive jet machining of ceramic materials”, Precision Engineering Journal of the International Societies for Precision Engineering and Nanotechnology 26 (2002) 193–198.
13. R. Balasubramaniama, J. Krishnana and N. Ramakrishnan, “A study on the shape of the surface generated by abrasive jet machining”, Journal of Materials Processing Technology 121 (2002) 102–106.
14. J.A. Plaza, M.J. Lopez, A. Moreno, M. Duch and C. Cané, “Definition of high aspect ratio glass columns”, Sensors and Actuators A105 (2003) 305–310.
15. D. Jianxin, F. Yihua, D. Zeliang and S. Peiwei, “Wear behavior of ceramic nozzles in sand blasting treatments”, Journal of the European Ceramic Society 23 (2003) 323–329.
16. M. Wakuda, Y. Yamauchi and S. Kanzaki, “Material response to particle impact during abrasive jet machining of alumina ceramics”, Journal of Materials Processing Technology 132 (2003) 177–183.
17. D.S. Park, M.W. Cho, H. Lee and W.S. Cho, “Micro-grooving of glass using micro-abrasive jet machining”, Journal of Materials Processing Technology 146 (2004) 234–240.
18. J. Qua, A. J. Shih, R.O. Scattergood and J. Luo, “Abrasive micro-blasting to improve surface integrity of electrical discharge machined WC–Co composite”, Journal of Materials Processing Technology 166 (2005) 440–448.
19. A.Sayah, V.K. Parashar, A.G. Pawlowski and M.A.M. Gijs, “Elastomer mask for powder blasting microfabrication”, Sensors and Actuators A125 (2005) 84–90
20. M. Junkar, B. Jurisevic, M. Fajdiga and M. Grah, “Finite element analysis of single-particle impact in abrasive water jet machining”, International Journal of Impact Engineering 32 (2006) 1095–1112.
21. Y.S. Liao, L.C. Chen, “Determination of mask opening size in creating a fluid hole on brittle material by double-side sand blasting”, The International Journal of Advanced Manufacturing Technology 29 (2006) 511–517.
22. M. Barletta, V. Tagliaferri, “Development of an abrasive jet machining system assisted by two fluidized bEDX for internal polishing of circular tubes”, International Journal of Machine Tools &; Manufacture 46 (2006) 271–283.
23. M.Hascalik, U. Caydas and H. Gurun, “Effect of traverse speed on abrasive waterjet machining of Ti–6Al–4V alloy”, Materials and Design 28 (2007) 1953–1957.
24. D. Jianxin, W. Fengfang and Z. Jinlong, “Wear mechanisms of gradient ceramic nozzles in abrasive air-jet machining”, International Journal of Machine Tools &; Manufacture 47 (2007) 2031–2039.
25. S. Jing, Q. Hu, J. Wang and Y. Jin, “Fluidization of coarse particles in gas–solid conicalbEDX”, Chemical Engineering and Processing, 39, 2000, pp. 379-387.
26. 李輝煌著,ANSYS工程分析-基礎與觀念,高立出版集團,台北,2009
27. 楊泰嘉,「覆晶封裝之熱應力與翹曲分析」,逢甲大學材料與製造工程所碩士論文,2006
28. W. Zhong, M. Zhang, B. Jin, “Maximum spoutable bed height of spout-fluid bed”, Chemical engineering Joural, 8, 2006, pp. 55-62.
29. 林江龍,「放電加工電極消耗可靠度與製程參數最佳化研究」,國立中央大學機械工程學系博士論文,1999。
30. M.S. Phadke, “Quality engineering using robust design”, AT&; T Laboratories (1989).
31. F.C. Khaw, B.S. Lim and L.E.N. Lim, “Optimal Design of Neural Networks Using the Taguchi Method”, NeuralComputing 7 (1995) 225–245.
32. W.H. Yang, Y.S. Tarng, “Design Optimization of Cutting Parameters for Turning Operations Based on the Taguchi Method”, Journal of Materials Processing Technology 84 (1998) 122-129.
33. 李輝煌著,田口方法-品質設計的原理與實務,高立出版集團,台北,2011
34. G. Taguchi, “Taguchi Methods in LSI Fabrication Process”, IEEE International Workshop on 2001 6th, (2001) 1–6.
35. B. R. Lawn, A. G. Evans, D. B. Marshall, “Elastic/plastic indentation damage in ceramics: the median/radial crack system”, J. Am. Ceram. 63(9) (1980) 574-581.
36. D. B. Marshall, “Geometrical effects in elastic/plastic indentation”, J. Am. Ceram. 64 (1981) 57-60.
37. P.D. Warren, “Determining the Fracture Toughness of Brittle Materials by Hertzian Indentation”, J Euro. ceram Soc 15 (1995) 385-394.
38. Dong-Sam Park, Myeong-Woo Cho, Honghee Lee , Won-Seung Cho, “Micro-grooving of glass using micro-abrasive jet machining”, Journal of Materials Processing Technology 146 (2004) 234-240.
39. J. Foldynaa, L. Siteka, J.Scuckaa, P. Martineca, J. Valiceka, K. Palenikovab,“Effects of pulsating water jet impact on aluminium surface”,Journal of Materials Processing Technology 209 (2009) 6174–6180
40. T. Matsumura , T. Muramatsu, S. Fueki,“Abrasive water jet machining of glass with stagnation effect”,CIRP Annals -Manufacturing Technology 60 (2011) 355–358
41. Sun Junlong, LiuChangxia,Tian Jin,Feng Baofu,“Erosion behavior of B4C based ceramic nozzles by abrasive air-jet”,Ceramics International38(2012)6599–6605
42. Yan-cherng LIN , Yuan-feng CHEN , A-cheng WANG , Wan-lin SEI ,“Machining performance on hybrid process of abrasive jet machining and electrical discharge machining”,Trans. Nonferrous Met. Soc. China 22(2012) s775−s780
43. A. Ghorbanpour Arani , R. Rahmani, A. Arefmanesh,“Elastic buckling analysis of single-walled carbon nanotube under combined loading by using the ANSYS software”,Physica E 40 (2008) 2390–2395
44. HAN Dong-tai, GE Shi-rong, DU Xue-ping,“Frictional heat analysis of mine hoist and numerical simulation on temperature field of gasket”,Mining Science and Technology 19 (2009) 0040–0044
45. Yanjun Xiao, Zhitao Zhang, Jian Gao, Yuming Guan,“The Analysis of Resistance Spot Weld Nuclear Forming Process Based on ANSYS”,Procedia Engineering 15 (2011) 5079 – 5084
46. Bing Bai, Lixiang Zhang, Tao Guo, Chaoqun Liu,“Analysis of Dynamic Characteristics of the Main Shaft System in a Hydro-turbine Based on ANSYS”,Procedia Engineering 31 (2012) 654 – 658
47. Sheng-Ju Wu , Kwan Ouyang, Sheau-Wen Shiah,“Robust design of microbubble drag reduction in a channel flow using the Taguchi method”,Ocean Engineering 35 (2008) 856–863
48. Te-Sheng Li , Szu-Hung Chen , Hsuen-Li Chen ,“Thermal-flow techniques for sub-35 nm contact-hole fabrication using Taguchi method in electron-beam lithography”,Microelectronic Engineering 86 (2009) 2170–2175
49. Ilhan Asiltürk , Harun Akkus,“Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method”,Measurement 44 (2011) 1697–1704
50. Nilrudra Mandal ,B. Doloi , B. Mondal , Reeta Das ,“Optimization of flank wear using Zirconia Toughened Alumina (ZTA) cutting tool: Taguchi method and Regression analysis”,Measurement 44 (2011) 2149–2155
51. B.T.H.T Baharudin, M.R. Ibrahim, N. Ismail, Z. Leman, M.K.A. Ariffin and D.L. Majid,“Experimental Investigation of HSS Face Milling to AL6061 using Taguchi Method ”,Procedia Engineering 50 ( 2012 ) 933 – 941。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔