跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/08 20:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳以理
研究生(外文):Yi-Li Chen
論文名稱:損耗性商品在不同商業模式下之最佳補貨策略
論文名稱(外文):Optimal Replenishment Strategy for Deteriorating Items with Various Commercial Behaviors
指導教授:黃惠民黃惠民引用關係
指導教授(外文):Hui-Ming Wee
學位類別:博士
校院名稱:中原大學
系所名稱:工業工程研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:88
中文關鍵詞:報童理論即時補貨二階存貨退貨保固價格回饋損耗性商品定價策略
外文關鍵詞:JIT multiple deliveriesNewsboy modelDeteriorating itemsPrice and rebate dependent demandWarrantyPricing policyTwo-echelon inventory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在現實世界中許多的產品(食品/季節商品/化學物品/消費性電子)皆存在著損耗性的本質,諸如腐爛,蒸發和變質。因此,良好的整體存貨策略和正確的合作模式是損耗性產品供應鏈成功的關鍵。由於依照產品以及產業差異,供應鏈的模型亦無法一體適用,本論文探討在不同商業模式下之整合性存貨模型,分別是以製造商為重心的損耗性供應鏈以及以零售商為重心的損耗性供應鏈。針對不同類型的供應鏈,分別探討影響整體利潤的重要因子,目標為發展出使整體聯合成本最小的存貨模型,並由實際的數據範例來證明此理論,而且提供了一個可以應用於現實環境下快速解決複雜問題的方案。
Most items deteriorate in the real world. Deterioration can include decay, evaporation, and spoilage, and will result in imperfect products during the manufacturing process. Therefore, an optimized replenishment strategy is the key to success. Our objective is to derive integrated replenishment strategies for deteriorating products from different business perspectives. We have developed optimal integrated models that consider the major factors in both manufacturer-centric and retailer-centric supply chains. Both models have been validated and analyzed using numerical examples. In addition, this research also provides a rapid solution to solve the above complex problems in the real world.
CONTENTS

CHAPTER 1 INTRODUCTION 1
1.1 Research background and purpose 1
1.2 Research scope 3
1.3 Research assumptions 3
1.4 Thesis outline 4
CHAPTER 2 LITERATURE REVIEW 5
2.1 Integrated inventory model 5
2.2 Deteriorating inventory 7
2.3 The newsboy model 8
2.4 Incentives and price effect 10
CHAPTER 3 THE DETERIORATING MANUFACTURER-CENTRIC SUPPLY CHAINS 13
3.1 Introduction 13
3.2 Notations and assumptions 13
3.2.1 Notations 13
3.2.2 Assumptions 15
3.3 Modeling and analysis 17
3.4 Retailer’s individual decision 20
3.5 Coordinated replenishment decision of supply chain 20
3.5.1 The relevant costs of the manufacturer’s final production process 20
3.5.2 The relevant costs of the manufacturer’s workstation m 24
3.5.3 The material’s relevant costs of the manufacturer 26
3.5.4 The total cost of the inventory model 27
3.6 Optimization of the proposed model 30
3.6.1 Chromosome design 31
3.6.2 Fitness function 31
3.7 Numerical example 32
3.8 Summary 36
CHAPTER 4 THE DETERIORATING RETAILER-CENTRIC SUPPLY CHAINS 37
4.1 Introduction 37
4.2 Notations and assumptions 40
4.2.1 Notations 40
4.2.2 Assumptions 42
4.3 Modeling and analysis 45
4.3.1 Model development 45
4.3.2 The retailer’s sale revenue 46
4.3.3 The retailer’s setup cost for special sale 49
4.3.4 The retailer’s costs for rebate redemption 50
4.3.5 The retailer’s holding cost and the lost-sale cost 51
4.3.6 The retailer’s inspection cost 52
4.3.7 The extra revenue of retailer’s on-hand inventory 52
4.3.8 The total profit of proposed model 53
4.4 Optimization of the proposed model 53
4.4.1 Decision on the number Ls of delivery time interval 54
4.4.2 Optimization for the number of ordering batch N 54
4.4.3 Optimization of the selling price pr 55
4.5 Numerical example and sensitivity analysis 58
4.6 Summary 64
CHAPTER 5 CONCLUSION AND FURTHER RESEARCH 65
REFERENCES 67
APPENDIXES 76
Appendix A 76


LIST OF TABLES

Table 3.1. Optimization results 34
Table 3.2 Numerical example 35
Table 4.1. Sensitivity analysis when deteriorating rate changes 61
Table 4.2. Sensitivity analysis when fixed demand rate changes 61
Table 4.3. Sensitivity analysis when the rebate-dependent demand rate changes 62
Table 4.4. Sensitivity analysis when the price-dependent demand rate changes 62
Table 4.5. Sensitivity analysis when the demand ratio influenced by price effect changes 62
Table 4.6. Sensitivity analysis when the demand ratio influenced by rebate effect changes 63
Table 4.7. Sensitivity analysis when resource-in-special-sale setup cost changes 63
Table 4.8. Sensitivity analysis when the special sale price changes 63
Table 4.9. Sensitivity analysis when the purchase cost changes 64
Table 4.10. Sensitivity analysis when the selling price changes 64


LIST OF FIGURES

Figure 1.1 General supply chain frameworks 2
Figure 3.1 The behavior of the production-inventory chain 17
Figure 3.2 The proposed flow of model achieving 18
Figure 3.3 The inventory level of the manufacturer’s workstation m 21
Figure 3.4 Genetic algorithm flows 30
Figure 3.5 Chromosome structure 31
Figure 3.6 Computing time with generations 33
Figure 3.7 Total cost with generations 35
Figure 4.1 The relevant factors of the inventory problem 38
Figure 4.2 The behavior of the retailer in the proposed supply chain 38
Figure 4.3 The behavior of the inventory level for the proposed model 45
Figure 4.4 The relationship between special sale period and supplier’s selling price increase 47
Figure 4.5 PIPD vs. change rate (various parameters) 59
Figure 4.6 Selling price vs. change rate (various parameters) 59
1. Abad, P. L. (2000), ‘Optimal price and order size for a reseller under partial backordering’, Computers & Operations Research 28 (1), 53-65.
2. Abad, P. L. (2003), ‘Optimal pricing and lot-sizing under conditions of perishability, finite production and partial backordering and lost sale’, European Journal of Operational Research 144 (3), 677-685.
3. Abdel-Malek, L. L. & Ziegler, H. (1988), ‘Age dependent perishability in two-echelon serial inventory systems’, Computers & Operations Research 15 (3), 227-238.
4. Aras, N.; Verter, V. & Boyaci, T. (2006), ‘Coordination and priority decisions in hybrid manufacturing/remanufacturing systems’, Production and Operations Management 15 (4), 528-543.
5. Bakker, M.; Riezebos, J. & Teunter, R. H. (2012), ‘Review of inventory systems with deterioration since 2001.’, European Journal of Operational Research 221 (2), 275-284.
6. Balkhi, Z. T. & Benkherouf, L. (2004), ‘On an inventory model for deteriorating items with stock dependent and time-varying demand rates’, Computers & Operations Research 31 (2), 223-240.
7. Banerjee, A. (1986), ‘A joint economic-lot-size model for purchase and vendor’, Decision Sciences 17 (3), 292-311.
8. Banerjee, A. (2005), ‘Concurrent pricing and lot sizing for make-to-order contract production’, International Journal of Production Economics 93–94 (0), 189-195.
9. Ben-Daya, M.; As’ad, R. & Seliaman, M. (2013), ‘An integrated production inventory model with raw material replenishment considerations in a three layer supply chain’, International Journal of Production Economics 143 (1), 53-61.
10. Bhunia, A. K. & Maiti, M. (1998), ‘A two warehouse inventory model for deteriorating items with a linear trend in demand and shortages’, Journal of the Operational Research Society 49, 287–292.
11. Bisi, A. & Dada, M. (2007), ‘Dynamic learning, pricing, and ordering by a censored newsvendor’, Naval Research Logistics 54 (4), 448-461.
12. Chang, P. L. & Lin, C. T. (1991), ‘On the effect of centralization on expected costs in a multi-location newsboy problem’, Journal of the Operational Research Society 42 (11), 1025-1030.
13. Chen, J. M. & Chen, T. H. (2005), ‘Effects of joint replenishment and channel coordination for managing multiple deteriorating products in a supply chain’, The Journal of the Operational Research Society 56 (10), 1224-1234.
14. Chen, L. H. & Chen, Y. C. (2009), ‘A newsboy problem with a simple reservation arrangement’, Computers & Industrial Engineering 56 (1), 157-160.
15. Chen, S. P. & Ho, Y. H. (2011), ‘Analysis of the newsboy problem with fuzzy demands and incremental discounts’, International Journal of Production Economics 129 (1), 169-177.
16. Cherikh, M. (2000), ‘On the effect of centralization on expected profits in a multi-location mewsboy problem’, Journal of Operational Research 51, 755–761.
17. Choi, D. W.; Hwang, H. & Koh, S. G. (2007), ‘A generalized ordering and recovery policy for reusable items’, European Journal of Operational Research 182 (2), 764-774.
18. Chung, C. J. & Wee, H. M. (2007), ‘Scheduling and replenishment plan for an integrated deteriorating inventory model with stock-dependent selling rate’, The International Journal of Advanced Manufacturing Technology 35 (7-8), 665-679.
19. Chung, C. J. & Wee, H. M. (2008), ‘An integrated production-inventory deteriorating model for pricing policy considering imperfect production, inspection planning and warranty-period- and stock-level-dependent demand’, International Journal of Systems Science 39 (8), 823-837.
20. Chung, C. J. & Wee, H. M. (2010), ‘Green-product-design value and information-technology investment on replenishment model with remanufacturing’, International Journal of Computer Integrated Manufacturing23 (5), 466-485.
21. Chung, C. J. & Wee, H. M. (2011), ‘Short life-cycle deteriorating product remanufacturing in a green supply chain inventory control system’, International Journal of Production Economics 129 (1), 195-203.
22. Cohen, M. A. (1977), ‘Joint pricing and ordering policy for exponentially decaying inventory with known demand’, Naval Research Logistics Quarterly 24 (2), 257-268.
23. Covert, R. P. & Philip, G. C. (1973), ‘An EOQ model for items with Weibull distribution deterioration’, A I I E Transactions 5 (4), 323-326.
24. Cárdenas-Barrón, L. E. (2009), ‘Optimal ordering policies in response to a discount offer: Corrections’, International Journal of Production Economics 122 (2), 783-789.
25. Cárdenas-Barrón, L. E. (2009), ‘Optimal ordering policies in response to a discount offer: Extensions’, International Journal of Production Economics 122 (2), 774-782.
26. Cárdenas-Barrón, L. E.; Smith, N. R. & Goyal, S. K. (2010), ‘Optimal order size to take advantage of a one-time discount offer with allowed backorders’, Applied Mathematical Modelling 34 (6), 1642-1652.
27. Datta, T. K. & Paul, K. (2001), ‘An inventory system with stock-dependent, price-sensitive demand rate’, Production Planning & Control 12 (1), 13-20.
28. DoğRu, M. K.; Van Houtum, G. J. & De Kok, A. G. (2008), ‘Newsvendor equations for optimal reorder levels of serial inventory systems with fixed batch sizes’, Oper. Res. Lett. 36 (5), 551-556.
29. Dubé, J. P.; Hitsch, G. & Manchanda, P. (2005), ‘An Empirical Model of Advertising Dynamics’, Quantitative Marketing and Economics 3 (2), 107-144.
30. Dye, C. Y. & Hsieh, T. P. (2012), ‘An optimal replenishment policy for deteriorating items with effective investment in preservation technology’, European Journal of Operational Research 218 (1), 106-112.
31. Eilon, S. & Mallya, R. (1966), ‘Issuing and pricing policy of semi-perishables’, Proceedings of 4th International conference on operational research, Wiley-Interscience, New York.
32. Eppen, G. D. (1979), ‘Note--Effects of centralization on expected costs in a multi-location newsboy problem’, Management Science 25 (5), 498-501.
33. Gallego, G. & Moon, I. (1993), ‘The distribution free newsboy problem: review and extensions’, Journal of the Operational Research Society 44 (8), 825-834.
34. Ghare, P. & Schrader, G. (1963), ‘A model for exponentially decaying inventories’, inventories, Journal of Industrial Engineering 15, 238-243.
35. Ghiani, G.; Laporte, G. & Musmanno, R. (2004), Introduction to Logistics Systems Planning and Control, Wiley.
36. Goh, M. & Sharafali, M. (2002), ‘Price dependent inventory model with discount offers at random times’, Production and Operations Management 11 (2), 139-156.
37. Goyal, S. K. (1977), ‘An integrated inventory model for a single supplier-single customer problem’, International Journal of Production Research 15 (1), 107-111.
38. Goyal, S. K. & Giri, B. (2001), ‘Recent trends in modeling of deteriorating inventory’, European Journal of Operational Research 134 (1), 1-16.
39. Goyal, S. K. & Nebebe, F. (2000), ‘Determination of economic production–shipment policy for a single-vendor–single-buyer system’, European Journal of Operational Research 121 (1), 175-178.
40. Gupta, D.; Hill, A. V. & Bouzdine-Chameeva, T. (2006), ‘A pricing model for clearing end-of-season retail inventory’, European Journal of Operational Research, 518-540.
41. Hardesty, D. M. & Bearden, W. O. (2003), ‘Consumer evaluations of different promotion types and price presentations: the moderating role of promotional benefit level’, Journal of Retailing 79 (1), 17-25.
42. Hsu, P.; Wee, H. & Teng, H. (2010), ‘Preservation technology investment for deteriorating inventory’, International Journal of Production Economics 124 (2), 388-394.
43. Jonrinaldi & Zhang, D. (2013), ‘An integrated production and inventory model for a whole manufacturing supply chain involving reverse logistics with finite horizon period’, Omega 41 (3), 598-620.
44. Khouja, M. (1999), ‘The single-period (news-vendor) problem: literature review and suggestions for future research’, Omega 27 (5), 537-553.
45. Kim, H. M. (2006), ‘Consumers’ responses to price presentation formats in rebate advertisements’, Journal of Retailing 82 (4), 309-317.
46. Kim, K.; Song, I.; Kim, J. & Jeong, B. (2006), ‘Supply planning model for remanufacturing system in reverse logistics environment’, Computers & Industrial Engineering 51 (2), 279-287.
47. Koh, S. G.; Hwang, H.; Sohn, K. I. & Ko, C. S. (2002), ‘An optimal ordering and recovery policy for reusable items’, Comput. Ind. Eng. 43 (1-2), 59-73.
48. Krishnan, H.; Kapuscinski, R. & Butz, D. A. (2004), ‘Coordinating contracts for decentralized supply chains with retailer promotional effort’, Management Science 50, 48-63.
49. Lariviere, M. A. & Porteus, E. L. (2001), ‘Selling to the Newsvendor: An Analysis of Price-Only Contracts’, Manufacturing & Service Operations Management 3, 293-305.
50. Lau, A. H. L. & Lau, H. S. (2002), ‘The effects of reducing demand uncertainty in a manufacturer–retailer channel for single-period products’, Computers & Operations Research 29 (11), 1583-1602.
51. Lau, H. S. & Lau, A. H. L. (1999), ‘Manufacturer’s pricing strategy and return policy for a single-period commodity’, European Journal of Operational Research 116 (2), 291-304.
52. Lee, H. L. & Rosenblatt, M. J. (1987), ‘Simultaneous Determination of Production Cycle and Inspection Schedules in a Production System’, Management Science 33 (9), 1125-1136.
53. Lin, Y.; Yu, J. C. & Wang, K. J. (2009), ‘An efficient replenishment model of deteriorating items for a supplier–buyer partnership in hi-tech industry’, Production Planning & Control 20 (5), 431-444.
54. Mathews, J. H. (1992), Numerical methods for mathematics, science, and engineering, Prentice Hall, Englewood Cliffs, N.J..
55. Mishra, A. K. (2004), ‘Selective discount for supplier–buyer coordination using common replenishment epochs’, European Journal of Operational Research 153 (3), 751-756.
56. Mitra, S. (2009), ‘Analysis of a two-echelon inventory system with returns’, Omega 37 (1), 106-115.
57. Moon, I. & Silver, E. A. (2000), ‘The multi-item newsvendor problem with a budget constraint and fixed ordering costs’, Journal of the Operational Research Society 51 (5), 602-608.
58. Moon, I. & Choi, S. (1995), ‘The Distribution Free Newsboy Problem with Balking’, Journal of the Operational Research Society 46 (4), 537-542.
59. Ouyang, L. Y.; Wu, K. S. & Ho, C. H. (2007), ‘An integrated vendor–buyer inventory model with quality improvement and lead time reduction’, International Journal of Production Economics 108 (1–2), 349-358.
60. Peters, H. (2008), Game Theory: A Multi-Leveled Approach, Springer, Berlin.
61. Qin, Y.; Wang, R.; Vakharia, A. J.; Chen, Y. & Seref, M. M. (2011), ‘The newsvendor problem: Review and directions for future research’, European Journal of Operational Research 213 (2), 361-374.
62. Qin, Y.; Tang, H. & Guo, C. (2007), ‘Channel coordination and volume discounts with price-sensitive demand’, International Journal of Production Economics 105 (1), 43-53.
63. Raafat, F.; Wolfe, P. M. & Eldin, H. K. (1991), ‘An inventory model for deteriorating items’, Computers & Industrial Engineering 20 (1), 89-94.
64. Sarker, B. R. & Al Kindi, M. (2006), ‘Erratum to: "Optimal ordering policies in response to discount offer" [International Journal of Production Economics 100 (2006) 195-211]’, International Journal of Production Economics 103 (2), 895.
65. Sarker, B. R. & Kindi, M. A. (2006), ‘Optimal ordering policies in response to a discount offer’, International Journal of Production Economics 100 (2), 195-211.
66. Shah, N. H. (2006), ‘Inventory model for deteriorating items and time value of money for a finite time horizon under the permissible delay in payments’, Intern. J. Syst. Sci. 37 (1), 9-15.
67. Shi, K. & Xiao, T. (2008), ‘Coordination of a supply chain with a loss-averse retailer under two types of contracts’, International Journal of Information and Decision Sciences 1 (1), 5-25.
68. Silver, E.; Pyke, D. & Peterson, R. (1998), Inventory Management and Production Planning and Scheduling, John Wiley and Sons, New York.
69. Soman, D. (1998), ‘The Illusion of Delayed Incentives: Evaluating Future Effort-Money Transactions’, Journal of Marketing Research 35 (4), 427-437.
70. Spiegel, M. R. (1981), Applied differential equations, Prentice-Hall, Englewood Cliffs, N.J.
71. Srivastava, S. K. (2007), ‘Green supply-chain management: A state-of-the-art literature review’, International Journal of Management Reviews 9 (1), 53-80.
72. Taylor, T. A. (2002), ‘Supply Chain Coordination Under Channel Rebates with Sales Effort Effects’, Management Science 48 (8), 992-1007.
73. Teng, J. T. & Chang, C. T. (2005), ‘Economic production quantity models for deteriorating items with price- and stock-dependent demand’, Computers & Operations Research 32 (2), 297-308.
74. Teng, J. T.; Ouyang, L. Y. & Chen, L. H. (2007), ‘A comparison between two pricing and lot-sizing models with partial backlogging and deteriorated items’, International Journal of Production Economics 105 (1), 190-203.
75. Tirole, J. (2008), The theory of industrial organization, MIT Press, Cambridge, MA.
76. Tsao, Y. C. & Sheen, G. J. (2008), ‘Dynamic pricing, promotion and replenishment policies for a deteriorating item under permissible delay in payments’, Computers & Operations Research 35 (11), 3562-3580.
77. Viswanathan, S. & Piplani, R. (2001), ‘Coordinating supply chain inventories through common replenishment epochs’, European Journal of Operational Research 129 (2), 277-286.
78. Vives, X. (1999), Oligopoly pricing: old ideas and new tools, MIT Press, Cambridge, MA.
79. Vollmann, T.; Berry, W.; Whybark, D. C. & Jacobs, F. R. (2005), ‘Manufacturing planning and control systems for supply chain management’, Journal of Business Logistics 20 (1), 183-203.
80. Waller, M. A.; Johnson, M. E. & Davis, T. (1999), ‘Vendor-managed inventory in the retail supply chain’, Journal of Business Logistics 20 (1), 183-203.
81. Wang, C. H. & Sheu, S. H. (2003), ‘Optimal lot sizing for products sold under free-repair warranty’, European Journal of Operational Research 149 (1), 131-141.
82. Wang, C. H. (2004), ‘The impact of a free-repair warranty policy on EMQ model for imperfect production systems’, Computers & Operations Research 31 (12), 2021-2035.
83. Wee, H. M. (1993), ‘Economic production lot size model for deteriorating items with partial back-ordering’, Computers & Industrial Engineering 24 (3), 449-458.
84. Wee, H. M. (1998), ‘Optimal Buyer-Seller Discount Pricing and Ordering Policy for Deteriorating Items’, The Engineering Economist 43 (2), 151-168.
85. Wee, H. M. & Chung, C. J. (2009), ‘Optimising replenishment policy for an integrated production inventory deteriorating model considering green component-value design and remanufacturing’, International Journal of Production Research 47 (5), 1343-1368.
86. Wee, H. M. & Law, S. T. (2001), ‘Replenishment and pricing policy for deteriorating items taking into account the time-value of money’, International Journal of Production Economics 71 (1–3), 213-220.
87. Wee, H. M.; Lee, M. C.; Yu, J. C. & Wang, C. E. (2011), ‘Optimal replenishment policy for a deteriorating green product: Life cycle costing analysis’, International Journal of Production Economics 133 (2), 603-611.
88. Xu, M. & Lu, Y. (2013), ‘The effect of supply uncertainty in price-setting newsvendor models’, European Journal of Operational Research 227 (3), 423-433.
89. Yang, P. C. & Wee, H. M. (2003), ‘An integrated multi-lot-size production inventory model for deteriorating item’, Computers & Operations Research 30 (5), 671-682.
90. Yao, Y.; Evers, P. T. & Dresner, M. E. (2007), ‘Supply chain integration in vendor-managed inventory’, Decision Support Systems 43 (2), 663-674.
91. Yeh, R. H.; Ho, W. T. & Tseng, S. T. (2000), ‘Optimal production run length for products sold with warranty’, European Journal of Operational Research 120 (3), 575-582.
92. Yu, Y.; Chu, F. & Chen, H. (2009), ‘A Stackelberg game and its improvement in a VMI system with a manufacturing vendor’, European Journal of Operational Research 192 (3), 929-948.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top