跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/23 10:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許盛榮
研究生(外文):Sheng-Jung Hsu
論文名稱:變壓吸附法的學習控制於放射線氪及氙氣的純化設計
論文名稱(外文):Purification of Radioactive Kr and Xe Using Pressure Swing Adsorption and Its Control Design
指導教授:陳榮輝陳榮輝引用關係
指導教授(外文):Junghui Chen
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:137
中文關鍵詞:吸附氣體純化氪氣基因演算法核廢氣處理變壓吸附
外文關鍵詞:AdsorptionGas purificationKryptonGenetic algorithmNuclear reprocessingPressure swing adsorption
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
核電廠的放射線廢氣處理主要技術為木炭床吸附分離,此分離技術單純是以巨型的管柱延遲放射線廢氣Kr-85 (氪)及Xe-13(氙)為目的,而其中微量的Kr-85半衰期長達10.76 年,長期以來一直被忽略,導致大氣中Kr-85 在全球排放總量已經超過背景值數千倍。因此以生活環境及人體安全為前提,使用傳統拖延方式是無法解決目前問題,本研究利用純化分離技術手段,期望能封存最高純度的放射性Kr 氣及Xe 氣,同時縮減管柱大小使吸附劑能不斷的連續進行純化及再生利用。本研究採用變壓吸附法(pressure swing adsorption,PSA)作為放射線廢氣中Kr氣的純化,PSA 是一個仿連續操作的吸附及再生系統,利用高壓吸附及低壓脫附再生的循環操作原理,比較起傳統方式更能有效的減少廢氣處理系統空間及成本。但是PSA 為一個多變數的複雜分離系統,如何有效地找出最佳分離操作條件是重要的,利用離線式基因演算法(Genetic Algorithms,GA)計算最佳化的搜尋方法。一般核電廠會從排放廢氣中所含的放射性廢氣(Kr、Xe)之濃度判斷廠內是否有異常現象發生,若在運轉過程中濃度異常上升使放射線廢氣排放超過法規限定值,嚴重時必須停止反應爐運轉勢必造成莫大損失。因此在設計PSA 時除了解決放射性廢氣異常濃度外,製程運行中常見的吸附劑老化導致吸附力逐漸衰退現象,修正控制設計是必需的,利用疊代學習控制法(iterative learning control,ILC)修正操作條件,使系統能在異常濃度下仍達到欲分離的純度期望值。放射線廢氣中的Xe-133,通常延遲數天無害後當廢氣處理,但它在空氣中僅含0.9x10^-5%是一種高價值的稀有(noble)氣體,可應用於汽車燈、奈米材料及半導體高分子聚合物等應用,亦可將其純化後再利用,因此本研究將三種類型的PSA,Modify-PSA、Vacuum-PSA及Idle-PSA,進行分析與比較測試Kr 及Xe 氣純化的效果,最後也利用多變數ILC修正異常狀況找回最佳值,使放射線廢氣分離技術更加完善。
The main technology in the treatment of radiation off-gas is gas solid adsorption(GSA) separation system which uses huge columns to delay the radioactive isotopes of Krypton and Xenon. However, tracing Krypton-85 with half-life of 10.76 years has long been ignored, causing global atmospheric Krypton-85 content to exceed the background value several thousand times. On the premise of natural environments and human health, traditional delay technology cannot solve the current problem. In this work, purifying separation techniques are used to achieve high-purity radioactive Krypton and Xenon, reduce column volume, achieve continuous purification and recycle the adsorbent. In this work, pressure swing adsorption (PSA) is used to purify radioactive off-gas of Krypton. PSA is a continuous operation of the adsorption and regeneration system. Based on the operating principle of high-pressure adsorption and low-pressure desorption regeneration cycle, it is more compact and economical than traditional methods. PSA is a multivariable complex separation system. In this research, a genetic algorithm is used to effectively identify the optimum separation operation conditions. In general, the concentration of the radioactive off-gas in the emission can be used to detect any fault in the operation. If the concentration exceeds the regulations limit, in severe cases, the nuclear reactor will have to be shut down and cause a great loss in profits. Therefore, it is essential for PSA to handle the abnormal concentration and the decrease in adsorption capacity caused by the decay of the adsorbent control design. Iterative learning control (ILC) is used to adjust the operation condition so that the desired purity can still be attained under abnormal concentrations. Another radioactive off-gas, Xenon-133, which is harmless after a few days, is often emitted as waste. However, it is a high-value tracing noble gas with applications in car lights, nano-materials and semiconductor polymers, so it should be purified for usage. In this study, a continuous purification of the Krypton and Xenon gases using a multi-bed PSA is proposed. Comparisons between the multi-bed PSA and three typical PSA modes, including Modified-PSA, Vacuum-PSA and Idle-PSA, are made in order to analyze and verify the separation performance. Like the single bed PSA, ILC control design is applied to the multi-bed PSA to make the system achieve desired purities even under abnormal concentration.
摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XII
第一章 序論 1
1-1 簡介 1
1-2 過去放射線廢氣的處理與固體吸附的研究 2
1-2-1 過去放射線廢氣處理方式 2
1-2-2 氣固管柱吸附法 2
1-3 變壓吸附法 3
1-3-1 變壓吸附原理 3
1-3-2 單管柱變壓吸附法 5
1-3-3 多管柱變壓吸附法 6
1-4 變壓吸附的設計控制 7
1-5 研究問題與方向 8
第二章 吸附管柱於核廢氣的處理 9
2-1 吸附管柱 9
2-2 吸附管柱模式 11
2-2-1 物理模式 11
2-3 吸附管柱操作策略 28
2-3-1 一段式吸附 31
2-3-2 一段式的測試範例 34
2-3-3 兩段式吸附 36
2-3-4 兩段式的測試範例 37
2-4 學習控制於兩段式吸附管柱的設計 39
2-4-1 線上的學習控制設計 41
2-4-2 線上的測試範例 44
第三章 單管真空變壓吸附於核廢氣的處理 47
3-1 引言 47
3-2 單管真空變壓吸附模式 47
3-2-1 物理模式 47
3-3 單管真空變壓吸附最佳化設計 52
3-3-1 離線的最佳化設計 52
3-3-2 離線的測試範例 57
3-4 學習控制於單管真空變壓吸附的設計 60
3-4-1 線上的學習控制設計 60
3-4-2 線上的學習控制設計測試範例 65
第四章 多管真空變壓吸附於核廢氣的處理 70
4-1 引言 70
4-2 多管修改變壓吸附模式 70
4-2-1 物理模式 71
4-3 多管真空變壓吸附模式 79
4-3-1 物理模式 79
4-3-2 多管閒置真空變壓吸附模式 80
4-4 多管變壓吸附最佳化設計 82
4-4-1 離線的最佳化設計 82
4-4-2 離線的測試範例 88
4-5 學習控制於多管變壓吸附的設計 90
4-5-1 線上的學習控制設計 90
4-5-2 線上的學習測試範例 95
第五章 結論 101
參考文獻 102
附錄 106

圖目錄
圖1-1 (a) Skarstrom傳統變壓吸附程序,(b) 管柱內進行吸附作用時濃度示意。4
圖1-2 調查全球大氣中Kr-85的背景值及年排放拍貝克。6
圖2-1 吸附分離過程,(a)混合成份進入管柱,(b)藉由吸附劑的選擇性 造成兩成份分離。10
圖2-2 取微單位體積之管柱。12
圖2-3 管內固體相的放大圖,流體相Cbi經由膜擴散至固體相qi質傳現象。13
圖2-4 管柱邊界分佈。17
圖2-5 管內流動相的放大圖,於穩態的層流,取一微單位體積之平衡。18
圖2-6 取微單位體積之管柱。21
圖2-7 傳統木炭延遲床在管柱內的濃度變化示意圖。27
圖2-8 兩段式批次操作,(a)管柱內濃度變化,(b) 操作一個循環兩步驟出口濃度比較,(c) 連續循環操作下時間及出口濃度情形。31
圖2-9 (a) Kr及(b) Xe氣在不同溫度吸附曲線與實驗數據對照,其中曲線部份為模擬,標記部份為實驗數據點。33
圖2-10 在溫度273K下,混合成份Kr及Xe氣,吸附曲線與實驗數據對照,其中曲線形部份為模擬,標記為實驗數據點。34
圖2-11 木炭床吸附惰性氣體進出口濃度變化。35
圖2-12 模擬核電廠木炭床,對Kr-85及Xe-133的活度出口活度變化。36
圖2-13 以三次循環為例在短型管柱出口端純化Kr及Xe氣濃度變化,其進料及再生時間為(a)短週期,(b)長週期,及(c)最適週期。38
圖2-14 在第三次循環後加入異常狀況,(a)進料分率異常,(b)吸附量異常,在出口端濃度變化。40
圖2-15 (a)增加及減少tfeed及tpurge對出口純度PuKr的百分比變化,(b)將tfeed的橫軸旋轉180度與tpurge相比較。42
圖2-16 ILC 循序修正GSA 操作條件的示意圖。44
圖2-17 十個循環後加入吸附劑衰退狀況,(a)未修正前及ILC 修正後的純度變化比較,(b) ILC 修正操作變數tfeed 的變化。45
圖3-1 單管VPSA四步驟,操作示意圖。47
圖3-2 GA 於 (a)收尋每個世代的最佳解趨勢,(b)在初始,20,40及最終世代,進料步驟下管柱內濃度變化,(c)吹出步驟下管柱內濃度變化。56
圖3-3 第十個循環下為例,(a)在進口端z=0 四步驟對濃度變化,(b)在出口z=L 端四步驟對濃度變化,(c)管內壓力變化。57
圖3-4 最佳操作條件下出口端,(a) Kr及Xe氣在1,5 及50 次循環濃度改變過程,(b) Kr氣每個循環的產量及平均純度變化。59
圖3-5 以最佳條件為基準並位於橫軸0%位置,增/減變動壓力及切換時間操作變數,對Kr氣平均純度的敏感測試。62
圖3-6 ILC 循序修正VPSA操作條件的示意圖。64
圖3-7 在進料濃度異常狀況下PuKr變化。65
圖3-8 在50個循環後加入濃度異常狀況,(a) ILC 系統控制後純度變化,(b) ILC 控制tpress變化。66
圖3-9 在吸附劑衰退狀況下PuKr變化。68
圖3-10 在50個循環後加入吸附劑衰退狀況,(a) ILC 系統控制純度變化,(b) ILC 控制tpress 變化過程。69
圖4-1 兩管柱六步驟MPSA,操作示意圖。71
圖4-2 兩管柱MPSA 六步驟,前三步驟操作濃度示意圖。72
圖4-3 兩管柱MPSA 六步驟,後三步驟操作濃度示意圖。77
圖4-4 兩管柱四步驟VPSA,操作示意圖。79
圖4-5 GA在三種類型各世代的演化趨勢:(a) MPSA ,(b) VPSA,及(c)IPSA。85
圖4-6 VPSA 及IPSA 在20 循環下,兩管柱於萃取端的濃度變化。87
圖4-7 VPSA 最佳操作條件下出口端Kr氣及進口端Xe氣,(a)Bed I的1,5 及50 次循環濃度變化,(b) Bed II的1,5 及50 次循環濃度分佈,(c) 每個循環下收集Kr及Xe氣平均純度變化過程。88
圖4-8 以最佳條件為基準並位於橫軸0%位置,增/減變動壓力及切換時間操作變數,對PuKr及PuXe平均純度的敏感測試。91
圖4-9 ILC 循序修正多管VPSA操作條件的示意圖。94
圖4-10 在濃度異常狀況下,(a)100 個循環的PuKr及PuXe變化,(b)比較30 循環內z=0及z=L 濃度變化過程。95
圖4-11 在20 個循環後加入濃度異常狀況,(a) ILC 系統控制後純度變化,(b) ILC 修正操作變數PH 及PL 變化。97
圖4-12 在吸附劑衰退狀況下PuKr及PuXe變化。98
圖4-13 在20 個循環後加入吸附劑衰退狀況,(a) ILC 控制後PuKr及PuXe變化過程,(b) ILC 修正操作變數PH 及PL 變化過程。99

表目錄
表2-1 一座發電量1100MWe 的壓水式反應器(PWR)電廠,每年未經處理外釋核種的活度及半衰期 9
表2-2 吸附的實驗參數 32
表2-3 Kr及Xe的回歸參數 32
表3-1 最佳的操作條件 56
表4-1 MPSA及VPSA 操作步驟的時間分佈 81
表4-2 IPSA 操作步驟的時間分佈 81
表4-3 最佳的操作條件 87
表4-4 各操作變數變動對pu{PuKr,PuXe}的變化影響 91
1.L. B. Batta, to Union Carbide Corporation, U.S. Patent 3,636,679 (1972).
2.M. Bitzer, "Model-Based Nonlinear Tracking Control of Pressure Swing Adsorption Plants," in: T. Meurer, K. Graichen, E.D. Gilles (Eds.), Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems, Springer, Vol.322, p.403-418 (2005).
3.A. I. Bolozdynya, P. P. Brusov, T. Shutt, C. E. Dahl and J. Kwong, "A Chromatographic System for Removal of Radioactive 85Kr from Xenon," Nuclear Instruments and Methods in Physics Research Section A, Vol.579, No.1, p.50-53 (2007).
4.D. S. Boning, W. P. Moyne, T. H. Smith, J. Moyne, R. Telfeyan, A. Hurwitz, S. Shellamn and J. Taylor, "Run by Run Control of Chemical-Mechanical Polishing," IEEE Transactions CPMT(C), Vol.19, p.307-314 (1996).
5.D. Braekers, J. Camps, J. Paridaens, P. Saey and K. van der Meer, "Reduction of RadioXenon Emissions from Radiopharmaceutical Facilities - A Pilot Study" SCK CEN Institutional Repository, Radioprotection, ISSN 0250-5010, 35:1, p.1-12 (2010).
6.F. P. Cardile and R. R. Bellamy, "Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Boiling Water Reactors (BWR-GALE Code)," NUREG-0016 (1979).
7.F. A. Da Silva and A. E. Rodrigues, "Propylene/Propane Separation by Vacuum Swing Adsorption Using 13X Zeolite," AIChE Journal, Vol.47, No.2, p.341-357 (2001).
8.J. A. Delgado and A. Rodrigues, "Analysis of the Boundary Conditions for the Simulation of the Pressure Equalization Step in PSA Cycles," Industrial and Engineering Chemistry, Vol.63, No.18, p.4452-4463 (2008).
9.J. A. Delgado, M. A. Uguina, J. L. Sotelo, V. I. Águeda and P. Góme, "Numerical Simulation of a Three-bed PSA Cycle for the Methane/Nitrogen Separation with Silicalite, " Separation and Purification Technology, Vol.77, No.1, p.7-17 (2011).
10.S. J. Doong and R. T. Yang, "Bidisperse Pore Diffusion Model for Zeolite Pressure Swing Adsorption," AIChE Journal, Vol.33, No.6, p.1045-1049 (1987).
11.S. J. Doong and R. T. Yang, "Bulk Separation of Multicomponent Gas Mixtures by Pressure Swing Adsorption: Pore/Surface Diffusion and Equilibrium Models," AIChE Journal, Vol.32, p.397-410 (1986).
12.J. H. Holland, "Adaptation in Natural and Artificial Systems," University of Michigan Press, Ann Arbor, MI, USA, (1975).
13.E. Hutter, J. Amend, R. V. Ammon, W. Bumiller and G. Neffe, "Final Results and Consequences of the Development of a Cryogenic Krypton Separation System," Proc. 19th. DOE/NRC Nuclear Air Cleaning Conference, p.549-559 (1986).
14.A. Ingolfsson, and E. Sachs, "Stability and Sensitivity of an EWMA Controller," Journal of Quality Techology, Vol.25, p.271-287 (1993).
15.J. -G. Jee, J. -H. Jung, J. -W. Lee, S. -H. Suh and C. -H. Lee, "Comparison of Vacuum Swing Adsorption Process for Air Separation Using Zeolite 10X and 13X," Revue Roumaine de Chimie, Vol.51, No.11, p.1095-1108 (2006).
16.H. Khajuria and E. N. Pistikopoulos, "Dynamic Modeling and Explicit / Multi-Parametric MPC Control of Pressure Swing Adsorption Systems," Journal of Process Control, Vol.21, No.1, p.151-163 (2011).
17.H. Khajuria and E. N. Pistikopoulos, "Optimization and Control of Pressure Swing Adsorption Processes under Uncertainty," AIChE Journal, Vol.59, No.1, p.120-131 (2013).
18.M. -B. Kim, J. -G. Jee, Y. -S. Bae and C. -H. Lee, "Parametric Study of Pressure Swing Adsorption Process to Purify Oxygen Using Carbon Molecular Sieve," Industrial and Engineering Chemistry, Vol. 44, No.18, p.7208-7217 (2005).
19.D. Ko, R. Siriwardane and L. T. Biegler, "Optimization of Pressure Swing Adsorption and Fractionated Vacuum Pressure Swing Adsorption Processes for CO2 Capture," Industrial and Engineering Chemistry, Vol.44, No.21, p.8084-8094 (2005).
20.D. E. Kowler and R. H. Kadlec, "The Optimal Control of a Periodic Adsorber: Part I. Experiment," AIChE Journal, Vol.31, No.6, p.1207-1212 (1972).
21.J. Lee and K. Lee, "Iterative Learning Control Applied to Batch Processes: An Overview," Control Engineering Practice, Vol.15, No.10, p.1306-1318 (2007).
22.W. D. Marsh, F. S. Pramuk, R. C. Hoke and C. W. Skarstrom, "Pressure Equalization Depressuring in Heatless Adsorption," U.S. Patent 3,142,547 to Esso Research and Engineering Company (1964).
23.M. Mofarahi, Z. Moghadaszadeh and J. Towfighi, "Study of a Four-Bed Pressure Swing Adsorption for Oxygen Separation from Air," Proceedings of the World Academy of Science and Technology, Vol.42, p.716-720 (2008).
24.J. R. Moyne, N. Chaudry and R. Tefeyan, "Adaptive Extensions to a Multi-branch Run-to-Run Controller for Plasma Etching," Journal of Vacuum Science &; Technology, Vol.13, p.1787-1791 (1995).
25.K. Munakata, T. Fukumatsu, S. Yamatsuki, K. Tanaka and M. Nishikawa, "Adsorption Equilibria of Krypton, Xenon, Nitrogen and Their Mixtures on Molecular Sieve 5A and Activated Charcoal," Journal of Nuclear Science and Technology, Vol.36 , No.9, p.818-829 (1999).
26.K. Munakata, K. Tanaka, S. Yamatsuki, T. Fukumatsu, S. Kanjo, Y. Yokoyama and M. Nishikawa, "Dynamics of Adsorption of Kr and Xe on MS5A and Activated Charcoal," Journal of chemical engineering of Japan, No.7, p.854-861 (2001).
27.K. Munakata, S. Yamatsuki, K. Tanaka and T. Fukumatsu, "Screening Test of Adsorbents for Recovery of Krypton" Journal of Nuclear Science and Technology , Nol.37, No.1, p.84-89 (2000).
28.J. P. Nichols and F. T. Binford, "Status of Noble Gas Removal and Disposal," ORNL-TM-3515, August (1971).
29.D. Nikolic, A. Giovanoglou, M. C. Georgiadis and E. S. Kikkinides, "Generic Modeling Framework for Gas Separations Using Multibed Pressure Swing Adsorption Proces," Industrial and Engineering Chemistry, Vol.47, No.9, p.3156-3169 (2008).
30.J. O. Ross, J. Ahlswede, R. Annewandter, S. Rast, K. Schlünzen and M. Kalinowski, "Update and Improvement of the Global Krypton-85 Emission Enventory," Journal of environmental radioactivity, Vol.115, p.34-42 (2013).
31.R. Schoetter, "Noble Gas Treatment and Emission Characteristics of Point Sources with Relevance to Undeclared Nuclear Activities," Universität Hamburg, p.97 (2010).
32.S. Sircar, and J. W. Zondlo, "Fractionation of Air by Adsorption," U.S. Patent 4,013,429 to Air Product and Chemicals, Inc (1977).
33.C. W. Skarstrom, "Method and Apparatus for Fractionating Gaseous Mixtures by Adsorption," U.S. Patent 2,944,627, assigned to Esso Research and Engineering Company (1960).
34.M. Steinberg and B. Manowitz, "Recovery of Fission Product Noble Gases," Industrial and Engineering Chemistry, Vol.51, p.47-50 (1959).
35.S. A. Stern and S. C. Wang, "Permeation Cascades for the Separation of Krypton and Xenon from Nuclear Reactor Atmospheres," AIChE Journal, Vol.26, No.6, p.891-901 (1980).
36.V. D. L. Torre, V. G. Fox, J. A. Bandoni and L. T. Biegler, "Model Predictive Controller for Periodic Adsorption Processes," Proceedings of ENPROMER (2005).
37.J. Weisman and M. Griffel, "Gas Handling Systems for Radioactive Gases," U.S Patent 3,093,564 (1963).
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top