跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 08:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施登耀
研究生(外文):Deng-Yao Shih
論文名稱:聚吡咯包覆二氧化矽顆粒及導電性質研究
論文名稱(外文):Preparation and electrical conductivity of SiO2/polypyrrole core-shell particles
指導教授:許克瀛
指導教授(外文):KE-YING SHIU
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:109
中文關鍵詞:導電高分子自由基聚合溶膠凝膠法
外文關鍵詞:Free radical polymerizationSol-gel methodConductive polymer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以三乙氧基乙烯基矽烷為前驅物,利用溶膠凝膠法製備出表面含乙烯基之二氧化矽顆粒,並以此顆粒作為粒種。因顆粒表面帶有乙烯官能基,可利用起始劑進行自由基聚合反應,將顆粒表面的乙烯基開鍵,形成以C-C單鍵鍵結而成的線形二氧化矽顆粒。
將前述自由基聚合法合成出的線形二氧化矽顆粒作為模板,利用氧化聚合法製備二氧化矽/聚吡咯核殼顆粒,由改變吡咯重量百分比、反應時間、穩定劑濃度及界面改質劑濃度,探討對顆粒型態的影響,獲得製備高產率線形二氧化矽/聚吡咯核殼顆粒的聚合條件,並探討顆粒之電導性質。
由研究結果得知,在適當的吡咯重量百分比和反應時間下,配合適當濃度的界面改質劑p-Toluenesulfonamide (p-TSA),可獲得高產率的線形二氧化矽/聚吡咯核殼顆粒。由四點探針檢測得知三球線形二氧化矽/聚吡咯核殼顆粒的電導率大於單球二氧化矽/聚吡咯核殼顆粒。
In this study, silica particles possessing vinyl groups are prepared by sol-gel method using vinyltriethoxysilane as a precursor. Because there are vinyl groups on silica particles, we can take these particles as seeds for polymerization. By using initiator to open vinyl groups and start the free radical polymerization, linear silica particles linked by C-C bond were formed.
The second step was to prepare SiO2/polypyrrole core–shell particles. SiO2/polypyrrole core–shell particles were prepared by a facile method through a redox reaction .By changing pyrrole wt%, reaction time, stabilizer concentration, and Surface modification agent concentration, the effect on particles morphology were investigated. System to prepare high yield linear SiO2/polypyrrole particles can be found. Electric conductivity property of these particles can be measured and tested.
From the experimental results, high yield of linear SiO2/polypyrrole particles were formed at appropriate pyrrole wt% and concentration of Surface modification agent. When the morphology of the samples changed from spherical to nanofibrous, electrical conductivity of the sample increased from 4.88×10-7 to 5.81×10-5 S/cm.
目錄
摘 要 I
Abstract II
誌謝 III
表目錄 VII
緒論 1
1-1 前言 1
1-2 研究動機 2
第二章 文獻回顧 3
2-1 表面含官能基之單一散度顆粒的製備 3
2-2 啞鈴形顆粒的製備 5
2-3 導電高分子 7
2-4 電化學聚合法 17
2-5 導電高分子的製備及應用 18
2-6 密度梯度離心 28
第三章 實驗理論 30
3-1 自由基聚合機制 30
3-2 陰離子聚合 34
3-2-1 陰離子聚合單體 34
3-2-2 陰離子聚合機制 35
3-3 溶膠凝膠法 38
3-4 穩定劑效應 42
3-5 密度梯度離心 46
3-6 導電高分子 49
第四章 實驗部份 52
4-1 實驗藥品 52
4-2 實驗儀器設備 54
4-3 實驗流程 56
4-4 實驗步驟及方法 60
4-4-1 溶膠凝膠法合成表面帶乙烯官能基之二氧化矽顆粒 60
4-4-2 氧化聚合法製備二氧化矽/聚吡咯顆粒 60
4-4-3 自由基聚合法合成線形二氧化矽顆粒 62
4-4-4 氧化聚合法製備線形二氧化矽/聚吡咯顆粒 62
4-4-5 密度梯度離心法純化啞線形二氧化矽顆粒 62
4-5 分析儀器原理 63
4-5-1 掃描式電子顯微鏡(SEM) 63
4-5-2-1 傅立葉轉換紅外線光譜儀(FTIR)之原理 64
4-5-2-2 傅立葉轉換紅外線光譜儀(FTIR)之測試 66
4-5-3 四點探針(Four-Point Probe) 66
4-5-4 化學分析電子能譜(electron spectroscopy for chemical analysis,ESCA)或稱X光光電子光譜(X-ray photoelectron spectroscopy,XPS) 67
第五章 結果與討論 68
5-1 表面含乙烯官能基二氧化矽顆粒的合成 68
5-2 氧化聚合法製備聚吡咯包覆二氧化矽顆粒 69
5-2-1 (甲)聚吡咯在不同濃度下進行聚合 70
5-2-1 (乙) 反應時間對聚合效果的影響 72
5-2-2 穩定劑對二氧化矽/聚吡咯顆粒包覆之影響 75
5-2-3 表面改質劑對二氧化矽/聚吡咯顆粒之影響 77
5-3 自由基聚合法製備線形二氧化矽顆粒 80
5-4 製備聚吡咯包覆二氧化矽線形顆粒 82
5-5 利用IR進行二氧化矽/聚吡咯顆粒之結構鑑定 87
5-6 利用XPS對二氧化矽/聚吡咯顆粒檢測 89
5-7 利用四點探針對二氧化矽/聚吡咯顆粒檢測 91
第六章 結論 94
第七章 參考文獻 96

表目錄
表2-1:不同成分P(BA–MMA)/PANI Films的電導率 7
表2-10 : Electrolytes Used and Interfaces at which 17
Solution-Surface electropolymerization of pyrrole was 17
observed (relative rates of polymerization are indicated) 17
表5-1:Recipe for Single Silica Particles by using Sol-gel method 68
表5-2 :各種條件對於二氧化矽/聚吡咯核殼顆粒聚合之影響 79
表5-3 : Recipe for linear VTES/PY core-shell particles prepared by Oxidative polymerization 83
表5-6:不同長度之二氧化矽/聚吡咯線形顆粒的表面元素組成 89
表5-7a : The resistance of particles & silica wafer 92
表5-7b : The Electric conductivity of particles & silica wafer 92

圖目錄
圖2-1:PS-SiO2核殼顆粒經鍛燒與沉降後形成膠體結晶 4
圖2-3: TEM photographs of P(BA–MMA)/PANI core–shell latexes: 8
(a) B6M4A3, (b) B8M2A3, (c) B6M4A5, and(d) B8M2A5 8
圖2-4:TEM photographs of P(BA–MMA)/PANI core–shell latexes with DBSA added: (a) B5M5A5D, (b) B6M4A5D, (c)B7M3A5D, and 9
(d) B8M2A5D. 9
圖2-5 : TEM imagine of Ag/Polypyrrole Core-Shell Nanostructures at different PVP concentrations: (A) 0.2%, (B) 0.5%, (C) 1%, and (D) 2%. 10
圖2-6 : TEM imagine of Ag/Polypyrrole Core-Shell nanoparticles : 12
(a) 4 h, (b) 6 h, (c) 24 h, (d)48 h 12
圖2-7: FTIR spectra of (a) PVP, (b) p-TSA, (c) p-TSA/PVP, 13
(d) Py/p-TSA/PVP and (e)Py/p-TSA/PVP/AgNO3 13
圖2-8 : SEM images of the Ag/PPy prepared under different 14
concentrations of SDBS : (A) 1.0 mM(B) 3.0 mM, (C) 5.0 mM. (D) is a magnified image corresponding to (C) 14
圖2-9: FE-SEM images of (A) APS oxidized bare PANI 16
(B) APSoxidized PANI/CHL-a nanohybrid 16
(C) FeCl3 oxidized PANI/CHL-a 16
(D) FeCl3 oxidized bare PANI 16
圖2-10 : SEM images of polypyrrole films at the microarray electrodes 18
圖2-11: (a) Schematic illustration showing conductive wrapping of 20
graphene/MnO2 (GM) to introduce an additional electron transport path (in a discharge cycle). 20
(b) Schematic of graphene/MnO2/CNT(GMC) and 20
graphene/MnO2/conducting polymer (GMP) systems formed by wrapping of GM nanostructures with CNTs or conducting polymers 20
圖2-12: Fig for current density & specific capacitance 21
圖2-13: Conductive wrapping of GM nanostructured electrodes with CNTs and conducting polymer PEDOT:PSS. 22
圖2-14 : TEM images of (a) SPEEK nanofibers (containing PAN) 24
and (b) SPEEK/PPy core−shell nanofibers 24
圖2-15 : Schematic Diagram the SPEEK/PPy Core−Shell 24
Nanofibers, During NH3 Sensing 24
圖2-16: TEM images of the urchinlike Au NPs 26
圖2-17 : Fig for PPy shell thickness and temperature relationship 27
圖2-19:密度梯度離心法分離石墨烯 29
圖3-1:乙烯基單體雙鍵被打開進行鏈聚合 30
圖3-2: 不同酸鹼環境下以溶膠凝膠法製成之顆粒型態 39
圖3-3:VTES經水解縮合形成表面帶乙烯基之二氧化矽顆粒 41
圖3-4:聚縮合反應製備顆粒技術 43
圖3-5: 分散聚縮合反應機構示意 44
圖 3-6: 接枝共聚合物在粒子與連續界面的位置 44
圖3-7: 立體穩定機構 45
圖3-8:密度梯度離心法與單一密度介質離心的比較 48
圖3-9:導體、半導體及絕緣體能帶示意圖 51
圖4-1:VTES水解縮合形成表面帶乙烯基之二氧化矽顆 56
圖 4-2 : 氧化聚合生成二氧化矽/聚吡咯顆粒 56
圖4-3:自由基聚合生成啞鈴形二氧化矽顆粒 57
圖4-4 : 氧化聚合生成線形二氧化矽/聚吡咯顆粒 57
圖 4-5 : 自由基聚合生成線形二氧化矽顆粒 58
圖4-6 : 氧化聚合生成線形二氧化矽/聚吡咯顆粒 58
圖 4-7 : 密度梯度離心 59
圖4-8:SEM示意圖 64
圖5-1:SEM image of single silica particles possessing vinyl groups 69
圖5-2-1(甲):TEM figure of VTES/PY core shell particles prepared by Oxidative polymerization under different wt% of PY 71
(a) 0.2 (b) 0.4 (c) 0.6 (d) 0.8 wt% 71
圖5-2-1(乙): TEM figure of VTES/PY core-shell particles prepared by Oxidative polymerization under different reaction time :(a)6hr (b)12hr (c)24hr(d)48hr 73
圖5-2-1: EDX figure for VTES/PY SEM figure of VTES/PY core-shell particles prepared by Oxidative polymerization : 74
(a)scanning range(b)Carbon(c)Oxygen(d)Silicon 74
圖5-2-2: TEM figure of VTES/PY core-shell particles prepared by Oxidative polymerization under different stabilizer concentration :(a)0.5 (b)1 (c)2(d)5 wt% 76
圖5-2-3: TEM figure of VTES/PY core-shell particles prepared by Oxidative polymerization under different surface modification agent concentration (a)1 (b) 5 (c) 10(d) 15 wt% 78
圖5-3:SEM image of Silica particles prepared by free radical reaction under different reaction time:(a)0.5 hr (b)1 hr (c)1.5 hr (d)3 hr 81
圖5-4-1 : SEM image of Density Gradient Centrifugation at 8000rpm,10min : (a) 40% (b) 50% 84
圖5-4-2 : SEM image of Density Gradient Centrifugation at 8000rpm,10min : (a) 60% 85
圖5-4-3 : TEM image of Density Gradient Centrifugation at 8000rpm,10min : (a) 40% (b) 50% 86
圖5-5a : IR-spectra of Silica & Py & Silica/Py particles 88
圖5-5b : IR-spectra of Silica & Py & Silica/Py particles 88
圖5-6: XPS全譜分析圖 90
圖5-7c : 電導率對應之直條圖 93
圖5-7d : SEM figure of VTES/PY core-shell particles by spin coating method 93
1.S. Xing, G. Zhao, Mater. Lett. 61 (2007) 2040.
2.X. Feng, H. Huang, Q. Ye, J. Zhu, W. Hou, J. Phys. Chem. C
111 (2007) 8463
3. X.M. Feng, H.P. Huang, Q.Q. Ye, J. Phys. Chem. C 111 (2007)
8463
4. R.D. Ambashta, M. Sillanpää, J. Hazard. Mater. 180 (2010)
38.
5. G. Zhang, J.H. Feng, L.H. Lu, B.H. Zhang, J. Colloid
Interface Sci. 351 (2010) 128.
6. W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295
(2002) 2425.
7. C.C. Hu, E. Chen, J.Y. Lin, Electrochim. Acta 47 (2002) 2741.
8. X. Yang, L. Li, F. Yan, Sens. Actuators B 145 (2010) 495.
9. H.W. Park,T. Kim,J. Huh,M. Kang,J.E. Lee,and H. Yoon, VOL. 6, NO. 9 ,7624–7633 ,2012
10.X. Feng, H. Huang, Q. Ye, J. Zhu, W. Hou, J. Phys. Chem. C
111 (2007) 8463.
11. D. Cheng, X. Zhou, H. Xia, H.S.O. Chan, Chem. Mater. 17
(2005) 3578.
12. M. Okubo, Y. Katayama and Y. Yamamoto ; Colloid & Polymer
Science. Volume 272, Number 5 (1994), 530-535
13. J.S. Song, L. Chagal, and M.A. Winnik ; Macromolecules (2006) 39,
5729-5737
14.Z. Meng, C.Y Xue, Q.H. Zhang, X.H. Yu, K. Xi, and X.D. Jia ;
Langmuir 2009, 25(14), 7879–7883
15. T.S. Deng and F. Marlow ; Chem. Mater. 2012, 24, 536−542
16.X. Feng,H. Huang,Q. Ye,J.J. Zhu,W. Hou, J. Phys. Chem. C 2007, 111,
8463-8468
17. Z. Shi, H. Wang, T. Dai, Y. Lu, Synthetic Metals 160 (2010) 2121–
2127
18. G. Dong, X. Xiao, X. Liu, B. Qian, Z. Ma, S. Ye, D. Chen, J. Qiu, J.
Nanopartic. Res.12 (2010) 1319.
19. B. Zhao, Z. Nan ,Materials Science and Engineering C 32
(2012) 1971–1975
20. J. Manna,D. Das, M. K. Mitra, J. Phys. Chem. 2013
21. S. Lee,H. Sung,S. Han, W. Paik, J. Phys. Chem. 1994,98, 1250-1252
22. M. Nishizawa, M. Shibuya, T. Sawaguchi, T. Matsue,I. Uchida,
J. Phys. Chem. 1991, 95, 9042-9044
23. E. Nomura, K. Ito, A. Kajiwara ,M. Kamachi ,Macromolecules 1997, 30, 3125-3126
24. N. Ueyama, T. Hosoi, Y. Yamada, M. Doi, T. Okamura,
A. Nakamura ,Macromolecules, Vol. 31, No. 22, 1998
25. W. R. Mariott ,Eugene Y.-X. Chen,Macromolecules 2004, 37, 4770-4775
26. F. Fusalba ,D. Be´langer, J. Phys. Chem. B 1999, 103, 9044-9054
27.W. Wang,Z. Li,T. Jiang,Z. Zhao,Y. Li,Z. Wang ,2012, 4, 6080−6084
28.J. Li,J. Han,T. Xu,C. Guo,X. Bu,H. Zhang,L. Wang,H. Sun,
and B. Yang , Langmuir.2013 Jun 11;29(23):7102-10
29. M. Ibisate, Z.Q. Zou, and Y.N. Xia ; Adv. Funct. Mater.
16(2006)1627
30. P.M. Johnson, C.M. van Kats, A. van Blaaderen ,Langmuir 2005, 21,
11510-11517
31. J.W. Kim, R.J. Larsen, and D. A. Weitz ; J. AM. CHEM. SOC. 2006,
128, 14374-14377
32. J.Z. Wang, A. Sugawara, A. Shimojima, T. Okubo , Langmuir 2010,
26(23), 18491–18498
33. G. Chen, Y. Wang, L.H. Tan, M.X. Yang, L.S. Tan, Y. Chen, and
H.Y. Chen ; J. AM. CHEM. SOC. 2009, 131, 4218–4219
34. X.M. Sun, D.C. Luo, J.F. Liu, and D.G. Evans ; VOL. 4 , NO. 6,
3381–3389 , 2010
35. T.P. Tyler, A.I. Henry, R.P. V. Duyne, and M.C. Hersam ; J. Phys.
Chem. Lett. 2011, 2, 218–222
36.王槐三,寇曉康;高分子化學教程;北京:科學出版社,2002
37. H.R. Allcock and F. W. Lampe., “Contemporary Polymer
Chemistry”,2nd Ed., Prentice Hall, Englewood Cliffs, New
Jersey, 1990, p.50.
38. Brinker, C. J. and Scherer, G. W., “Sol-Gel Science: The physics and
chemistry of sol-gel processing”, Academic Press, Inc., New York
(1990)
39. Sacks, M. D.; Sheu, R. S., “Rheological characterization during the
sol-gel transtion”, in “Science of Ceramic Chemical Processing”,
eds.Hench, L. L. and Ulrich, D. R., Wiley, New York (1986)
40. Iler, R. K. The Chemistry of silica (Wiley, New York, 1979).
41. G. Chen, Y. Wang, L.H. Tan, M.X. Yang, L.S. Tan, Y. Chen, and H.Y. Chen ; J. AM. CHEM. SOC. 2009, 131, 4218–4219
42. X.M. Sun, D.C. Luo, J.F. Liu, and D.G. Evans ; VOL. 4 , NO. 6 , 3381–3389. 2010
43. T.P. Tyler, A.I. Henry, R.P. V. Duyne, and M.C. Hersam ; J. Phys. Chem. Lett. 2011, 2, 218–222
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top