跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/25 21:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉曉燕
研究生(外文):Hsiao-Yen Liu
論文名稱:非線性平滑轉換模型之應用
論文名稱(外文):Applications of nonlinear smooth regime-switching models
指導教授:吳博欽吳博欽引用關係
指導教授(外文):Po-Chin Wu
學位類別:博士
校院名稱:中原大學
系所名稱:商學博士學位學程
學門:商業及管理學門
學類:一般商業學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:87
中文關鍵詞:健康照護支出雙邊貿易餘額油價持續性非線性平滑轉換模型
外文關鍵詞:smooth transition autoregressive (STAR) modeloil price persistencehealth care expenditurebilateral trade balancepanel smooth transition regression (PSTR) model
相關次數:
  • 被引用被引用:4
  • 點閱點閱:525
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以非線性模型為基礎探討三個不同的研究主題:首先,將線性自我迴歸模型(Autorgressive model; AR model) 延伸至非線性的平滑轉換自我迴歸模型 (Smooth Transition Autoegression model; STAR model),以探討油價的持續性問題;其次,將縱橫平滑轉換模型 (Panel Smooth Transition Regression model; PSTR model) 應用至貿易引力模型上 (Gravity model of trade),以分析中國大陸與G7雙邊貿易餘額的非線性門檻效果;最後,利用PSTR模型重新檢驗16個OECD會員國的健保醫療支出的動態行為與各種彈性效果。

第一篇文章-The impact of monetary policy on oil price persistence: an application of the smooth regime-switching model,旨在探討不同的貨幣政策下對油價持續性的影響,並證明油價呈現非線性的波動型態。本文採用Teräsvirta and Anderson (1992) 提出的平滑轉換自我迴歸 (STAR) 模型,並分別利用三種不同的貨幣政策變數 (消費者物價指數、短期利率-聯邦資金市場利率,以及長期利率-美國三十年期公債) 當作轉換變數,探討油價非線性的動態路徑及其持續性之特性。實證結果顯示:(1) 油價與貨幣政策存在非線性的關係,且在不同的轉換變數及轉換區間下,油價的持續性會呈現不同的狀態,此與文獻上以線性模型探討油價持續性之結果,存在顯著的差異。此外,傳統的自我迴歸模型所評估出來油價持續性會產生高估的現象;(2)當FED採行第三次貨幣寬鬆政策(QE3)時,將造成美國的短期利率下降,惟此短期利率(0.1%)遠低於門檻值(8.1%),故在此低利率的情況下,QE3所產生的油價持續性將維持在0.2006;(3)若美國政府發行長期政府公債以籌措長期資金及促進經濟成長,此舉將使得債券價格下跌,長期利率上漲。然而,即便長期利率上漲至4.41%,仍低於門檻值8.58%,故油價持續性將維持在0.2006;(4)當美國政府採行相對低的物價膨脹目標區 (Inflation Targeting) 政策,使得短期利率上揚,油價持續性依舊處於低水準 (0.1703及0.2006),對經濟成長及穩定物價不致於產生傷害。換言之,在現階段的美國貨幣市場採行物價膨脹目標區間或發行長期公債的時機點是恰當的,且其效果為正面影響,有助於美國本土的生產及消費活動。

第二篇文章-The threshold effects on the impacts of economic fundamentals on China’s bilateral trade balance with G7 countries,旨在建立縱橫平滑轉換 (Fok et al., 2004; Gonzáez et al., 2005) 的引力模型 (gravity model),以檢視中國大陸與G7之間的雙邊貿易餘額的動態特性。該模型具有幾項優點:(1) 解決傳統利用線性模型分析貨幣貶值與經濟變數對貿易餘額產生的影響之不足,亦即能同時解決異質性與非線性的問題;(2) 更精確地衡量運輸成本,亦即將傳統以進口加權距離作為運輸成本的代理變數分解成實質油價及進口加權距離二項,並可探討近期油價大幅波動對大陸貿易餘額之影響;(3) 有別於以往文獻,本文所採用之轉換變數為具最適落後期之貨幣政策變數,而非當期的貨幣政策變數。實證結果顯示:(1) 雙邊貿易餘額與總體經濟因素存在顯著的非線性關係;(2) 以落後一期的兩國利差為轉換變數下,大陸的雙邊貿易餘額存在非線性平滑轉換的現象,亦即總體經濟變數對大陸的雙邊貿易餘額會產生不同的邊際效果;(3) 兩國的實質利差和貿易餘額變動存在非線性因果關係;(4) 若以González et al. (2005) 所提出的當期貨幣政策變數作為轉換變數進行估計,將造成高估實質匯率及進口的加權距離的效果,且低估實質油價及實質所得的效果,顯見貨幣政策具有落後的效果。

第三篇文章-A re-examination of the health-income nexus based on a panel smooth transition regression model,利用PSTR模型探討16個OECD會員國所得與健康照護支出的非線性關係。在評估此非線性關係時,本文將人口結構及醫療技術提升納入考量,以提升估計的健全性。其中以時間趨勢代表醫療技術的提升,以65歲以上及15歲以下的人口代表依賴人口。實證結果顯示,健保支出與相關的影響變數,例如:所得、醫療技術及人口結構,存在非線性的關係,且此關係隨國家與時間而變動。其次,醫療技術的進步會對健康照顧支出產生非線性的衝擊,一旦忽略醫療技術進步及人口年齡的結構,將使得醫療支出的所得彈性被高估。此外,醫療支出為一必需品,且當落後五期的政府負擔比例增加時,會使醫療的所得彈性提升。因此,政府在醫療保健支出所投入的比重,在醫療保健支出的所得彈性上扮演著舉足輕重的角色。
Abstract

This Ph.D. dissertation entitled “Application of non-linear smooth regime-switching models” includes the following three essays:
(1) The impact of monetary policy on oil price persistence-an application of smooth regime-switching model.
(2) The threshold effects on the impacts of economic fundamentals on China’s bilateral trade balance with G7 countries.
(3) A re-examination of the health-income nexus based on a panel smooth transition regression model.

The first essay employs the STAR model to evaluate the persistence of oil price changes, and chooses monetary policy variables as transition variables of the model to assess their roles in the persistence effects. The empirical results show that oil price changes displayed asymmetric adjustments within different regimes and were more sensitive to the movement of interest rates than inflation rate. In addition, high inflation rate would give rise to low oil price persistence, and expansionary monetary policy would bring about higher oil price persistence. Moreover, when the short- and long-term interest rates were over their threshold values, the persistence effects of oil price changes were opposite. In the present relatively low US interest rates, either adopting inflation targeting policy or/and debt-financing policy to stimulate economic growth, the timing is appropriate and the effect will be positive and expected because of low persistence of oil price changes.

In the second essay, we investigate the threshold effects on the impacts of fundamentals (i.e., incomes, exchange rates, oil prices, and import-weighted distances) on China’s trade balances with the G7 countries between 1975 and 2010 by using a panel smooth transition regression (PSTR) model with the transition variable of lagged real interest rate differential. The empirical results show that the relationship between the trade balance and the fundamentals is rather nonlinear, changes over time and across countries depending on the lagged real interest rate differential during the different regimes. Moreover, China’s bilateral trade balance responds significantly to the changes in relative real income differentials, real oil prices, and import-weighted distance. If the Federal Reserve adopts an expansionary monetary policy in the near future, China would still accumulate higher bilateral trade surpluses from most of the G7 countries, as long as the following situations exist: an increase in China’s relative real per capita income, a slow increase in real oil price, and a stable RMB exchange rate system.

The third essay employs a panel of 16 OECD countries over the period 1975–2009 to re-examine the health care expenditure (HCE)-income relationship by considering a lagged ratio of public expenditures on health as the transition variable in panel smooth transition regression (PSTR) models. PSTR models can capture the heterogeneity of any individual country, provide more detailed information for policy makers of an individual government, and resolve the insufficient observations problem that frequently appears in annual country-level data. Our empirical results indicate that the relationship between HCE and its determinants, including income, time (trend), and age structure variables, is nonlinear and varies with time and across countries. The time (trend) variable-a proxy for technical progress in health care-has a non-linear impact on HCE. Ignoring the variables-technological change of health care and age structure of population-will result in over-estimates of the income elasticities of HCE. Moreover, HCE behaves as a necessity good, and the income elasticity increases when the five-period lagged ratio of public expenditures on health increases. Clearly, the ratio of government financing on health plays an important role in influencing HCE.
Table of Contents

摘要.......................I
Abstract……………………………………………………………………………… III
Acknowledgements………………………………………………………………V
Table of Contents………………………………………………………………VI
List of Tables………………………………………………………………………VIII
List of Figures……………………………………………………………………IX
1.Synthetic Introduction on Three Essays………………………………… 1
2.The impact of monetary policy on oil price persistence: An application of smooth regime-switching model…………………………………………… 4
2.1 Introduction…………………………………………………………………… 4
2.2 Literatures Reviews………………………………………………………. 7
2.3 Models and Methodology…………………………………………….. 9
2.3.1 Nonlinear persistence evaluation: STAR model……………………. 9
2.3.2 Linearity test and selection of transition function………………………… 13
2.4 Empirical Results……………………………………………………………… 14
2.4.1 Data description…………………………………………………………14
2.4.2 Persistence estimation of oil price changes………………………………15
2.4.3 Simulation: Economic growth, monetary policy, and oil prices persistence………………………………………………………………22
2.5 Conclusions……………………………………………………………………23
3. The threshold effects in the impacts of economic fundamentals on China’s bilateral trade balance with G7 countries…………………………………………27
3.1 Introduction……………………………………………………………………27
3.2 Literatures Review…………………………………………………………… 31
3.3 Empirical models……………………………………………………………… 32
3.3.1 PSTR model………………………………………………………………. 32
3.3.2 Modified gravity model of trade………………………………………….. 34
3.4 Estimation and specification tests……………………………………………... 35
3.4.1 Choice of transition variable……………………………………………… 36
3.4.2 Linearity and no remaining non-linearity tests…………………………… 37
3.5 Empirical results……………………………………………………………….. 38
3.5.1 Data description…………………………………………………………... 38
3.5.2 Empirical results…………………………………………………………... 39
3.5.3 Stylized facts of China’s bilateral trade balance………………………….. 43
3.6 Conclusion…………………………………………………………………….. 45
4. A re-examination of the health-income nexus base on a panel smooth threshold regression model…………………………………………………………………. 50
4.1 Introduction……………………………………………………………………. 50
4.2 Model………………………………………………………………………….. 53
4.3 Estimation and specification tests……………………………………………... 55
4.3.1 Choice of transition variable……………………………………………… 55
4.3.2 Linearity and no remaining non-linearity tests…………………………… 56
4.4 Empirical Results……………………………………………………………… 56
4.4.1 Data description…………………………………………………………... 56
4.4.2 Estimation results…………………………………………………………. 57
4.4.3 Dynamic paths of estimated income elasticities………………………….. 61
4.5 Conclusions……………………………………………………………………. 66
5. Conclusions………………………………………………………………………. 68
Reference…………………………………………………………………………. 71
List of Tables

Table 2-1 Descriptive statistics………………………………………………………. 15
Table 2-2 Results of ADF unit root test……………………………………………… 15
Table 2-3 Persistence estimation of oil price change: AR model……………………. 16
Table 2-4 Linearity test………………………………………………………………. 17
Table 2-5 Transition function selection of the STAR models………………………... 17
Table 2-6 Persistence estimation of oil price changes: STAR model with different transition variables……………………………………………………........ 19
Table A2-1 Data description and measurement……………………………………… 25
Table A2-2 Test results of Granger causality-linear………………………………….. 25
Table A2-3 BDS statistics of WTI and monetary policy-nonlinear………………….. 26
Table 3-1 Linearity test………………………………………………………………. 40
Table 3-2 Test of no remaining non-linearity……………………………………........ 41
Table 3-3 Estimation results of bilateral trade balance- the PSTR specification…….. 43
Table A3-1 Data measurement……………………………………………………….. 47
Table A3-2 Descriptive statistics……………………………………………………... 47
Table A3-3 Panel unit root test………………………………………………………. 48
Table 4-1 Linearity test………………………………………………………………. 57
Table 4-2 Test of no remaining non-linearity………………………………………… 58
Table 4-3 Estimation results of HCE………………………………………………… 60
Table 4-4 Average estimated income elasticity of individual country (1975-2009)… 66
Table A4-1 Descriptive statistics and panel unit root test……………………………. 67
List of Figures

Figure 2-1 Time series of variables and transition parameters………………………. 22
Figure 3-1 Bilateral trade balance-China with the G7 countries……………………... 39
Figure A3-1 (a) Real interest rate differentials-China with the G7 countries………... 48
Figure A3-1 (b) Relative real per capita GDP-China with the G7 countries………… 48
Figure A3-1 (c) Real oil price………………………………………………………... 49
Figure 4-1 Estimated individual income elasticities from Eq. (5)…………………… 65
Anselin, L. (1998), “Interactive techniques and exploratory spatial data analysis,” In Longley P, Goodchild M, Maguire D, Rhind D (eds), Geographical Information Systems: principles, techniques, management and applications, Cambridge, Geoinformation International (in press).
Aslanids, N. (2002), “Smooth transition regression models in UK stock returns,” Royal Economic Society Conference.
Anderson J. E. and E. van Wincoop (2004), “Trade Costs,” Journal of Economic Literature, 42(3), 691-751.
Askari, H. and Krichene, N. (2010), “The impact of monetary policy on oil process parameters and market expectations,” Global Finance Journal, 21(2), 186-200.
Bacfkus, D. K. and Crucini, M. J. (2000), “Oil prices and the term of trade,” Journal of International Economics, 50, pp185-213.
Baek, E. G. and Brock, W. A. (1992), “A nonparametric test for independence of a multivariate time series,” Statistica Sinica, 2, 137-156.
Bagchi, D., Chortareas, G. E. and Miller, S. M. (2004), “The real exchange rate in small, open, developed economies: Evidence from cointegration analysis,” Economic Record, 80(248),76-88.
Bahmani-Oskooee, M. and Brooks, T. J. (1999), “Bilateral J-Curve Between U.S. and her Trading Partners,” Weltwirtschaftliches Archiv, 135, 156-165.
Baier, S. L. and Bergstrand, J. H. ( 2001 ), “The growth of world trade: tariffs, transport costs, and income similarity,” Journal of International Economics, 53, 1-27.
Baldwin, R. E., Forslid, R., Martin, P., Ottaviano, G. I. P., and Robert-Nicoud, F. (2003), “Economic geography and public policy,” Princeton, NJ: Princeton University Press.
Ben-David, D. and Papell, D. H. (1995), “Trade and convergence among countries,” Journal of International Economics, 40, 279-298.
Bergoeing, R. and Kehoe, T. J. (2003), “Trade theory and trade facts,” Staff Report 284, Federal Reserve Bank of Minneapolis.
Blanchard, O., Giavazzi, F. and Sá, F. (2005), “The U.S. Current Account Deficit and the Dollar,” Brookings Papers on Economic Activity, 1, 1-65.
Blomqvist, A. G. and Carter, R. A. L. (1997), “Is health care really a luxury?” Journal of Health Economics, 16(2), 207-229.
Brown, S. P. A. and Yücel, M. K. (1999), “Oil Prices and U.S. Aggregate Economic Activity: A Question of Neutrality,” Federal Reserve Bank of Dollars Economic and Financial Review, Second Quarter, 16-23.
Brown, S. P. A. and Yücel, M. K. (2002), “Energy prices and aggregate economic activity: An interpretative survey,” Quarterly Review of Economics and Finance, 42(2), 191-208.
Burbidge, J. and Harrison, A. (1984), “Testing for the effects of oil-price rises using vector autoregressions,” International Economic Review, 25, 459-484.
Carrion-i-Silverstre, J. L. (2005), “Health care expenditure and GDP: are they broken stationary?” Journal of Health Economics, 24(5), 839-854.
Chan, K. S. and Tong, H. (1986), “On estimating thresholds in Autoregressive models,” Journal of Time Series Analysis, 7, 178-190.
Chen, S. S and Chen, H. C (2007), “Oil prices and real exchange rates,” Energy Economics, 29(3), 390-404.
Cheung, Y., Chinn, M., and Fujii, E. (2009), “China’s Current Account and Exchange Rate,” NBER No. 14673.
Clemente, J., Montañés, A., and Pueyo, F. (2004), “On the international stability of health care expenditure functions: are government and private functions similar?” Journal of Health Economics, 23, 589-613.
Colletaz, G. and Hurlin, C. (2005), “Threshold effects in the public capital productivity: an international panel smooth transition approach”, University of Orléans, Working paper.
Culyer, A. J. (1990), “Cost containment in Europe, in OECD,” 1990 Health care Systems in Transition, Paris: OECD.
Cuñado, J. and Pérez de Gracia, F. (2003), “Do oil price shocks matter? Evidence for some European countries,” Energy Economics, 25, 137-154.
Deardorff, A. (1997), “Determinants of bilateral trade: does Gravity work in a classical world?” The regionalization of the World Economy Chicago: University of Chicago Press.
Delong, E. R., Delong, D. M., and Clarke-Pearson, D. L. (1988), “Comparing the areas under tow or ore correlated receiver operating characteristic curves: a nonparametric approach,” National Center for Biotechnology Information, 44(3), 837-845.
Dreger, C. and Reimers, H. E. (2005), “Health care expenditures in OECD countries: a panel unit root and cointegration analysis,” International Journal of Applied Economietrics and Quantitative Studies, 2, 2319-2338.
Edelstein, P., and Kilian, L. (2007), “The response of business fixed investment to energy price changes: a test of some hypotheses about the transmission of energy price shocks,” B.E. Journal of Macroeconomics, 7(1).
Edwards, S. (2006), “External Imbalances in an Advanced Commodity Exporting Country: The Case of New Zealand,” NBER Working Paper 12620.
Ellen, S. ter, and Zwinkels, R. C. J. (2010), “Oil Price Dynamics: A Behavioral Finance Approach with Heterogeneous Agents,” Energy Economics, 32(6), 1427-1434.
Endoh, M. (2000), “The transition of post-war Asia-Pacific trade relations,” Journal of Asian Economics, 10(4), 571-589.
Faruqee, H. (2004), “Exchange Rate Pass-Through in the Euro Area: The Role of Asymmetric Pricing Behavior,” IMF Working Paper No. 04/14.
Federer, J. P. (1996), “Oil price volatility and the macroeconomy,” Journal of Macroeconomics, 18(1), 1-26.
Felder, S., Meier, M., and Schmitt, H. (2000), “Health care expenditure in the last months of life,” Journal of Health Economics, 19, 679-695.
Flood, R. and Marion, N. P. (1999), “Perspectives on the Recent CurrencyCrisis Literature,” International Journal of Finance and Economics, 4: 1-26.
Fok, D., van Dijk, D. and Franses, P. (2004), “A Multi-Level Panel STAR Model for US Manufacturing Sectors,” Working paper, University of Rotterdam.
Forbes, C. S., Karlb, G. RJ., and Kofman, P. (1999), “Bayesian arbitrage threshold analysis,” Journal of Business &; Economic Statistics, 17(3), 364-72.
Fouquau, J., Hurlin, C., and Rabaud, I. (2008), “The Feldstein–Horioka puzzle: a panel smooth transition regression approach”, Economic Modeling, 25, 284–299.
Frankel, J. (2008), “The effect of monetary policy on real commodity prices,” NBER Working Paper no. W12713.
Fung, H. G. and Isberg, S. C. (1992), “The International Transmission of Eurodollar and U.S. Interest Rates: A Cointegration Analysis,” Journal of Banking and Finance, 16, 757-769.
Garcia-Herrero, A. and Koivu, T. (2007), “Can the Chinese trade surplus be reduced through exchange rate policy?,” BOFIT Discussion Papers, No. 6/2007.
Garcia-Herrero, A. and Koivu, T. (2009), “China’s Exchange Rate Policy and Asian Trade,” BIS working paper No.282.
Gerdtham, U. and Löthgren, M. (2000), “On stationarity and cointegration of international health expenditure and GDP,” Journal of Health Economics, 19, 461-475.
Gonzàlez, A., Teräsvirta, T., and van Dijk D. (2004), “Panel smooth transition regression model and an application to investment under credit constraint,” Working Paper Stockholm School of Economics.
Gonzàlez, A., Teräsvirta, T., and van Dijk D. (2005), “Panel Smooth Transition Regression Models,” Research paper 165. Quantitative Finance Research Center. University of Technology, Sidney.
Granger, C.W.J., and Teräsvirta, T. (1993), “ Modelling Non-Linear Econometric Relationships,” Oxford: Oxford University Press.

Grisse, C. (2010), “What drives the oil-dollar correlation?” Federal Reserve Bank of New York, 1-22.
Gronwald, M. (2009), “Reconsidering the macroeconomics of the oil price in Germany: testing for causality in the frequency domain,” Empirical Economics, 36(2), 441-453.
Gruen, D. W. R. and Wilkinson, J. (1994), “Australia’s Real Exchange Rate –Is It Explained by the Terms of Trade or by Real Interest Rate Differential?,” Economic Record, 70: 204-19.
Hamid, S. A. and Dhakar, T. S. (2011), “The behavior of the US consumer price index 1913-2003: a study of seasonality in the monthly US CPI,” Applied Economics, 40(13), 1637-1650.
Hamilton, J. D. (1990), “Analysis of the time series subject to change in regime,” Journal of Econometrics, 45, 39-70.
Hamilton, J. (1988), “A Neoclassical Model of Unemployment and the Business Cycle,” Journal of Political Economy, 96(3), 593–617.
Hamilton, J. D. (1983), “Oil and the macroeconomy since World War II,” Journal Politic Economy, 91(2), 228-248.
Hamilton, J. D. (1996), “This is What Happened to the Oil Price Macroeconomy Relationship,” Journal of Monetary Economics, 38(2), 215-220.
Hamilton, J. D. (2008), “Oil and the Macroeconomy.” In The New Palgrave Dictionary of Economics, edited by Stephen Durlauf and Lawrence Blume. New York: Palgrave MacMillan Ltd.
Hansen, P. and King, A. (1996), “The determinants of health care expenditure: a cointegration approach,” Journal of Health Economics, 15(1), 127-137.
Hartman, D. G. (1984), “The International Financial Market and U.S. Interest Rates,” Journal of International Money and Finance, 3, 91-103.
Henneke, J., Rachev, S., Fabozzi, F. and Nkiolov, M. (2011), “MCMC Based estimation of Markov switching ARMA-GARCH models,” Applied Economics, 43(3), 259-271.
Hitiris, T. and Posnett, J. (1992), “The determinants and effects of health expenditure in developed countries,” Journal of Health Economics, 11, 173-181.
Hooker, M. (1996), “What happened to the oil price-macroeconomy relationship?” Journal of Monetary Economy, 38, 195-213.
Hooker, M. (2002), “Are oil shocks inflationary? Asymmetric and Nonlinear specification versus changes in regime,” Journal of Money, Credit and Banking, 34, 540-561.

Hsiao, C. (2000), “Comparing the performance of two indices for spatial model selection: application to two mortality data,” Statistics in Medicine, 19, 1915-1930.
Hsiao, C. (2003), “Analysis of Panel Data, 2nd Edition.” Cambridge University Press.
Huang, B., Hwang, M. J. and Peng, H. (2005), “The Asymmetry of the Impact of OilPrice Shocks on Economic Activities: An Application of the Multivariate Threshold Model,” Energy Economics, 27, 455–476.
Huang, C. J., Wang, H. C., Chen, M. G., and Hwang, T. C. (2009), “The impact of international oil prices on consumer prices: Evidence from a VAR model,” WRI World Congress on Computer Science and Information Engineering, 4,531-534.
Imbs, J., Mumtaz, H., Ravn, M., and Rey, H. (2003), “The PPP Controversy: A Summary of the Debate Surrounding ‘PPP Strikes Back’,” available at www.london.edu/∼jimbs.
Ivrendi, M., and Guloglu, B. (2010), “Monetary shocks, exchange rates and trade balance: evidence from inflation targeting countries,” Economic Modelling, 27, 1144-1155.
Jewell, T., Lee, J., Tieslau, M., and Strazicich, M. C. (2003). “Stationarity of health expenditures and GDP: evidence from panel unit root tests with heterogeneous structural breaks,” Journal of Health Economics, 22(2), 313-323.
Jiménez-Rodríguez, R. and Sánchez, M. (2005), “Oil price shocks and real GDP growth: Empirical evidence for some OECD countries,” Applied Economics, 37, 201-228.
Johansen, S. (1988), “Statistical analysis of cointegration vectors,” Journal of Economic Dynamics and Control, 12(2-3), 231-254.
Kamps, Ch. and Pierdzioch, Ch. (2002), “Monetary Policy Rules and Oil Price Shocks,” www.ssrn.com
Khan, M. Z. S., and Hossaian, M. I. (2010), “A Model of Bilateral Trade Balance: Extensions and Empirical Tests,” Economic Analysis and Policy, 40(3), 377-391.
Kim, S. (2001), “Effects of monetary policy shocks on the trade balance in small open European countries,” Economics Letters, 71, 197-203.
Kleiman, E. (1974), “The determinants of national outlays on health,” The Economics of Health and Medical Care, In M. Perlman (ed.), London: Macmillan Information, The Bell Journal Economics, 12(2), 488-506.
Krichene, N. (2006), “world crude oil markets: Monetary policy and the recent oil shock,” IMF working paper, 1-27.
Kristjánsdóttir, H. (2005), “A gravity model for exports from Iceland,” Working Paper 14, Center for Applied Microeconometrics (CAM), University of Copenhagen.

Krugman, P. and Anthony J. Venables (1990), “Integration and the competitiveness of peripheral industry,” In. Christopher Bliss and Jaime de Macedo, eds., Unity with Deversity in the European Economy, Cambridge: Cambridge University Press.
Lanne, M. and P. Saikkonen (2002), “Threshold autoregressions for strongly autocorrelated time series,” Journal of Business and Economic Statistics, 20, 282-289.
Lardic, S. and Mignon, V. (2008), Oil Prices and Economic Activity: An Asymmetric Cointegration Approach, Energy Economics, 30, 847-855.
Lee, J. and Chinn, M. (2006), “Current account and the real exchange rate in the G7 countries,” Journal of International Money and Finance, 25, 257-274.
Leu, R. E. (1986), “The public-private mix and international health care costs,” Complementaries and Conflicts, Oxford: Basic Blackwell.
Levin, A., Lin, C. F., and Chu, C. (2002), “Unit root in panel data: asymptotic and finite-sample properties,” Journal of Econometrics, 108, 1-24.
Lin, C. J., and Teräsvirta, T. (1994), “Testing the constancy of regression parameters against continuous structural change,” Journal of econometrics, 62, 211-228.
Lizard, R. A. and Mollick, A. V. (2010). Oil price fluctuations and U.S. dollar exchange rates. Energy Economics, 32(2), 399-408.
Lundberg, S., Teräsvirta, T., and van Dijik, D. (2003), “Time-Varying Smooth Transition Autoregressive Models, ” Journal of Business and Economics Statistics, 21, 104-121.
mcCoskey, S. K. and Selden, T. M. (1998), “Health care expenditure and GDP: panel data unit root test results,” Journal of Health Economics, 108, 1-24.
Mork, K. A. (1989), “Oil and the macroeconomy when prices go up and down: An extension of Hamilton’s results,” Journal of Political Economy, 91, 740-744.
Newhouse, J. P. (1977), “Medical-care expenditure: a cross-national survey,” Journal of Human Resource, 12, 115-25.
Obstfeld, M. and Taylor, A. M. (1997), “Nonlinear aspects of goods-market arbitrage and adjustment: Heckscher’s commodity points revisited,” Journal of the Japanese and International Economies, 11, 441-479.
Obstfeld, M. and Rogoff, K. (2005), “Global Current Account Imbalances and Exchange Rate Adjustments,” Brookings Paper on Economic Activity 1, 124-140.
Perron, P. (1997), “Further evidence on breaking trend functions in macroeconomic variables,” Journal of Econometrics, 80, 355-385.
Prat, G. and Uctum, R. (2009), “Modeling oil price expectations: Evidence from survey data,” Working Paper 2009-2028.
Reitz, S. and Slopek, U. (2009), “Non-linear oil price dynamics: A tale of heterogeneous speculators?” German Economic Review, 10, 270-283.

Sadorsky, P. (2000), “The empirical relationship between energy futures prices and exchange rates,” Energy Economics, 22, 253-266.
Samimi, A. J. and Shahryar, B. (2009), “Oil Price Shocks, Output and Inflation: Evidence from Some OPEC Countries,” Australian Journal of Basic and Applied Sciences, 3(3), 2791-2800.
Serra-Sastre V. and McGuire, A. (2009), “Diffusion of health technologies: evidence from the pharmaceutical sector,” Chapter 4 in Costa-Font J, Courbage C and McGuire A (ed.). The economics of new technologies – incentives, organization and financing. Oxford University Press.
Smith, R. D. (2002), “Construction of the contingent valuation market in health care: a critical assessment,” Health Economics, 12(8), 609-628.
Stock, J. H. and Watson, M. W. (1996), “Evidence on Structural Instability in Macroeconomic Time Series Relations,” Journal of Business and Economic Statistics, 14(1), 11-30.
Swanson, P. E. (1987), “Capital Market Integration over the Past Decade: The Case of the US Dollar,” Journal of International Money and Finance, 6, 215-25.
Swanson, P. E. (1988), “Interrelationships among Domestic and Eurocurrency Deposit Yields: A Focus on the U.S. Dollar,” Financial Review, 23, 81–94.
Taylor, M. P. and Allen, H. (1992), “The use of technical analysis in the foreign exchange market,” Journal of International Money and Finance, 11, 304-314.
Taylor, M. P. and Peel, D. A. (2000), “Nonlinear adjustment long-run equilibrium and exchange rate fundamental,” Journal of international money and finance, 19, 33-53.
Teräsvirta, T. (1994), “Specification, estimation, and evaluation of smooth transition autoregressive models,” Journal of the American Statistical Association, 89, 208-218.
Thapa, N. B. (2002), “An Econometric Analysis of the Impact of Real Effective Exchange Rate of Economic Activities in Nepal,” Economic Review: Occasional Paper, 14, 17-36.
Thorbecke, W. (2006), “How would an appreciation of the Renminbi affect the U.S. trade deficit with China?,” Topics in Macroeconomics, 6(3), 1454.
Tinbergen, J. (1962), “Shaping the World Economy: Suggestions for an international Economic Policy,” New York: The Twentieth Century Fund, 20, 791-807.
Tong, H. (1978), “On a threshold model,” In Pattern Recognition and Signal Processing (Edited by C. H. Chen), Sijthoff and Noordhoff, Amsterdam.
Tong, H. (1990), “Non-linear times series: A dynamical approach,” Oxford University Press.

Tong, H. and Lim, K. S. (1980), “Threshold autoregression, limit cycles and cyclical data,” Journal of Royal Statistics Society, B42, 245-292.
Tosetti, E. and Moscone, F. (2007), “Health expenditure and income in the United States,” University of Leicester, Working Paper No. 07/14.
Tronzano, M., Psaradakis, Z., and Sola, M. (2003), “Target zone credibility and economic fundamentals,” Economic Modelling, 20, 791-807.
van Dijk, D., Franses, P. H., and Lucas, A. (1999), “Testing for smooth transition nonlinearity in the presence of outliers,” Journal of Business &; Economic Statistics, 17(2), 217-235.
van Dijk, D., Terasvirta, T. and Franses, P. H. (2002), “Smooth transition autoregressive models- a survey of recent developments,” Econometric Reviews, 21, 1-47.
Wang, K. (2011), “Health care expenditure and economic growth: Quantile panel-type analysis,” Economic Modelling, 28(4), 1536-1549.
Wu, M. H. and Ni, Y. S. (2011), “The effects of oil prices on inflation, interest rates and money,” Management Sciences Research, 36(7), 4158-4164.
Yousefi, A. and Wirjanto, T. S. (2004), “The Empirical Role of the Exchange Rate on the Crude Oil Price formation,” Energy Economics, 26, 783-799.
Zhang, Y. J. and Wei, Y. M. (2010), “The crude oil market and the gold market: Evidence for cointegration, causality and price discovery,” Resources Policy, 35(3), 168-177.
Zhang, Y. and Xu, Q. (2009), “Common persistence in international oil prices,” Computer Science and Engineering, 182-186.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊