跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/10 12:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張雅棠
研究生(外文):Ya-Tang Chang
論文名稱:台灣貿易財能源及碳含量分析-投入產出結構分解之應用
論文名稱(外文):Energy and Carbon Embodied in International Trade of Taiwan:An Input-Output Structural Decomposition Analysis
指導教授:林晉勗林晉勗引用關係林師模林師模引用關係
指導教授(外文):Jin-Xu LinShih-Mo Lin
學位類別:碩士
校院名稱:中原大學
系所名稱:國際經營與貿易研究所
學門:商業及管理學門
學類:貿易學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:58
中文關鍵詞:碳稅能源密集度結構分解分析投入產出碳含量
外文關鍵詞:Energy intensityinput-outputembodied carbonstructural decomposition analysiscarbon tax
相關次數:
  • 被引用被引用:3
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
經濟快速發展的過程中常伴隨著使用大量的化石燃料,然而過度倚賴化石燃料的結果,也導致大氣中的溫室氣體濃度大幅提高。近年來,氣候變遷問題受到世界各地的矚目,其中,二氧化碳又是造成溫室效應最主要的溫室氣體;再者,台灣由於地理位置關係及缺乏自然資源,國際貿易則成為最主要的經濟活動之一,有鑑於此,致力減少國際貿易過程的二氧化碳排放,已逐漸成為台灣必須亟力面對及解決的問題。
本研究估算了台灣1996、2001及2006年各產業部門產品的能源及二氧化碳含量,並探討出口產品能源及碳含量的變化及主要影響因素。我們利用投入產出之結構分解分析,將可能導致出口能源及碳含量的變動的因素分成五種,分別為直接能源效率、能源消費結構、中間投入結構、出口結構及出口量等。分析結果顯示,1996至2001年期間,除了總出口量因素之外,出口品的能源及含碳量增加主要係受到直接能源效率、中間投入結構、出口結構因素的變動影響;然而,2001至2006年期間,出口品含碳量之增加最主要是來自於出口結構大幅度的變動。
本研究也同時探討政府的能源相關政策是否對減少產品之能源及碳含量有所幫助。本研究著重在分析課徵碳稅後產品及出口之碳含量的變動,模擬分析結果顯示,1996至2001年間,課徵碳稅後的產品及出口之碳含量會有些微的下降,然而,2001至2006年期間,課徵碳稅後的產品及出口之碳含量卻會有明顯的下降,顯示對後段期間課徵碳稅將較具政策有效性。


There is an increasing concern about climate change around the world. CO2 is one of the major greenhouse gases (GHG) causing global warming. Moreover, international trade is a major economic activity in Taiwan. As a consequence, efforts to reduce CO2 emissions in international trade have become an imperative thing for Taiwan and are also gaining momentum all over the world.
This study computes the energy and carbon intensities of the Taiwanese economy in 1996, 2001 and 2006 to figure out the changes of energy and carbon embodied in products and exports and their contributing factors. We use the structural decomposition analysis to find out the relative contribution of five factors causing the changes in the energy and carbon embodied in exports. From 1996 to 2001, the changes in the direct energy efficiency, the structure of intermediate inputs and the structure of exports are the most important factors contributed to the changes of energy and carbon embodied in exports in Taiwan. On the other hand, the structure of exports has been the most important factor between 2001 and 2006.
This study also explores whether energy policy could have effectively reduced the energy and carbon embodied in exports in Taiwan. Our results of imposing carbon tax on using fossil fuels reveal that the carbon embodied in exports would have decreased only moderately from 1996 to 2001 after taxation. However, the carbon embodied in exports would have decreased significantly from 2001 to 2006 after taxation, implying that carbon tax would have been a more effective policy in the latter period.


Content
摘要 I
Abstract II
誌 謝 III
Content IV
Table List V
Figure List VI
Chapter 1. Introduction 1
Chapter 2. Literature review 6
2.1 Energy and carbon embodied in international trade 6
2.2 The effect of carbon tax on CO2 emissions 8
Chapter 3. Methodology 10
3.1 Input- output analysis 10
3.2 Hybrid-unit input-output analysis 11
3.3 Input- output structural decomposition analysis 13
3.4 Carbon tax analysis 17
3.4.1 Input-output price model 17
3.4.2 The energy effect of commodity price fluctuation 17
Chapter 4 Results and Discussions 20
4.1 Data sources 20
4.2 Energy analysis 20
4.2.1 Energy Intensities 20
4.2.2 Energy Embodied in Exports and Structural Decomposition 23
4.3 Carbon analysis 27
4.3.1 Carbon Intensities 27
4.3.2 Carbon Embodied in Exports and Structural Decomposition 30
4.4 The Effect of Carbon Tax on Carbon Embodied in Exports 33
Chapter 5. Conclusions 38
Reference 40
Appendix 45


Table List
Table 1 Input-output table 11
Table 2 Hybrid-unit input output table 12
Table 3 Direct energy intensities of non-energy sectors 21
Table 4 Total carbon intensities of non-energy sectors 22
Table 5 SDA results of changes in the energy embodied in exports 25
Table 6 Share of SDA results of changes in the energy embodied in exports 25
Table 7 Energy embodied in exports 25
Table 8 Structure of exports 26
Table 9 Direct carbon intensities of non-energy sectors 28
Table 10 Total carbon intensities of non-energy sectors 29
Table 11 SDA results of changes in the carbon embodied in exports 32
Table 12 Share of SDA results of changes in the carbon embodied in exports 32
Table 13 Carbon embodied in exports 32
Table 14 Comparison of total outputs 34
Table 15 Comparison of carbon embodied in exports 35
Table 16 SDA results of changes in the carbon embodied in exports after taxation 36
Table 17 The share of SDA results of changes in the carbon embodied in exports after taxation 37
Table 18 Carbon embodied in exports after taxation 37

Table A1 Data description and source 45
Table A2 Estimated results of regression analysis of electricity demand 46
Table A3 Estimated results of regression analysis of primary energy demand 47
Table A4 Estimated results of regression analysis of refined petroleum products demand 48
Table A5 Estimated short-run price elasticity 48


Figure List
Figure 1 Proportion of export to GDP 2
Figure 2 Research framework 4
Figure 3 Research steps 5
Figure 4 Energy embodied in exports 26
Figure 5 Carbon embodied in exports 33
Figure 6 Comparison of carbon embodied in exports 35
Figure 7 Carbon embodied in exports after taxation 38


Aasness, J., Bye, T., and Mysen, H. T. (1996). Welfare effects of emission taxes in Norway. Energy Economics, 18(4), 335-346.
Ang, B. W., and Liu, F. (2001). A new energy decomposition method: perfect in decomposition and consistent in aggregation. Energy, 26(6), 537-548.
Baranzini, A., Goldemberg, J., and Speck, S. (2000). A future for carbon taxes. Ecological Economics, 32(3), 395-412.
Bohlin, F. (1998). The Swedish carbon dioxide tax: effects on biofuel use and carbon dioxide emissions. Biomass and Bioenergy, 15(4-5), 283-291.
Bordigoni, M., Hita, A., and Le Blanc, G. (2012). Role of embodied energy in the European manufacturing industry: Application to short-term impacts of a carbon tax. Energy Policy, 43, 335-350.
Bullard, C. W., and Herendeen, R. A. (1975). The energy cost of goods and services. Energy Policy, 3(4), 268-278.
Bullard, C. W., Penner, P. S., and Pilati, D. A. (1978). Net energy analysis: Handbook for combining process and input-output analysis. Resources and Energy, 1(3), 267-313.
Buterbaugh, K. (2008). Trade and the environment. Trade and the Environment, 3, 571-578.
Casler, S., and Hannon, B. (1989). Readjustment potentials in industrial energy efficiency and structure. Journal of Environmental Economics and Management, 17(1), 93-108.
Casler, S. D., and Rose, A. (1998). Carbon dioxide emissions in the US economy: a structural decomposition analysis. Environmental and Resource Economics, 11(3-4), 349-363.
Chang, Y. F., Lewis, C., and Lin, S. J. (2008). Comprehensive evaluation of industrial CO2 emission (1989–2004) in Taiwan by input–output structural decomposition. Energy Policy, 36(7), 2471-2480.
Chang, Y. F., and Lin, S. J. (1998). Structural decomposition of industrial CO2 emission in Taiwan: an input-output approach. Energy Policy, 26(1), 5-12.
Chen, C. Y., and Rose, A. (1990). A structural decomposition analysis of changes in energy demand in Taiwan: 1971-1984. The Energy Journal, 11(1), 127-146.
Choi, J. K., Bakshi, B. R., and Haab, T. (2010). Effects of a carbon price in the US on economic sectors, resource use, and emissions: An input–output approach. Energy Policy, 38(7), 3527-3536.
Gowdy, J., and Miller, J. (1987). Technological and demand change in energy use: an input-output analysis. Environment and Planning A, 19(10), 1387-1398.
Harrison, G. W., and Kriström, B. (1997). Carbon taxes in Sweden. Institutionen för Skogsekonomi.
Hawdon, D., and Pearson, P. (1995). Input-output simulations of energy, environment, economy interactions in the UK. Energy Economics, 17(1), 73-86.
Hoekstra, R., and Van Den Bergh, J. C. (2002). Structural decomposition analysis of physical flows in the economy. Environmental and Resource Economics, 23(3), 357-378.
Hoekstra, R., and Van den Bergh, J. C. (2003). Comparing structural decomposition analysis and index. Energy Economics, 25(1), 39-64.
Kagawa, S., and Inamura, H. (2001). A structural decomposition of energy consumption based on a hybrid rectangular input-output framework: Japan's case. Economic Systems Research, 13(4), 339-363.
Kang, S. I., Oh, J. G., and Kim, H. (2012). Korea's low-carbon green growth strategy. OECD Publishing.
Kejun, J., Cosbey, A., and Murphy, D. (2010). Embodied carbon in traded goods.
Kondo, Y., Moriguchi, Y., and Shimizu, H. (1998). CO2 Emissions in Japan: Influences of imports and exports. Applied Energy, 59(2), 163-174.
Lee, K. C., (2005). Practices of the input-output analysis (in Chinese). Council for Economic Planning and Development.
Lenzen, M. (1998). Primary energy and greenhouse gases embodied in Australian final consumption: an input–output analysis. Energy Policy, 26(6), 495-506.
Leontief, W. (1970). Environmental repercussions and the economic structure: an input-output approach. The Review of Economics and Statistics, 52(3), 262-271.
Liang, C. Y., 2009. The effect of energy tax on energy demand and the economy of Taiwan (in Chinese). Taiwan Economic Forecast and Policy 40, 45-78.
Liang, Q. M., Fan, Y., and Wei, Y. M. (2007). Carbon taxation policy in China: How to protect energy-and trade-intensive sectors? Journal of Policy Modeling, 29(2), 311-333.
Lim, H. J., Yoo, S. H., and Kwak, S. J. (2009). Industrial CO2 emissions from energy use in Korea: A structural decomposition analysis. Energy Policy, 37(2), 686-698.
Lin, B., and Li, X. (2011). The effect of carbon tax on per capita CO2 emissions. Energy Policy, 39(9), 5137-5146.
Liu, H., Xi, Y., Guo, J. e., and Li, X. (2010). Energy embodied in the international trade of China: An energy input–output analysis. Energy Policy, 38(8), 3957-3964.
Liu, N., and Ang, B. (2007). Factors shaping aggregate energy intensity trend for industry: Energy intensity versus product mix. Energy Economics, 29(4), 609-635.
Lu, C., Tong, Q., and Liu, X. (2010). The impacts of carbon tax and complementary policies on Chinese economy. Energy Policy, 38(11), 7278-7285.
Machado, G., Schaeffer, R., and Worrell, E. (2001). Energy and carbon embodied in the international trade of Brazil: an input–output approach. Ecological Economics, 39(3), 409-424.
Mäenpää, I., and Siikavirta, H. (2007). Greenhouse gases embodied in the international trade and final consumption of Finland: an input–output analysis. Energy Policy, 35(1), 128-143.
Manne, A. S., and Richels, R. G. (1990). CO2 emission limits: an economic cost analysis for the USA. The Energy Journal, 11(2), 51-74.
Metz, B. (2007). Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, University Press.
Miller, R. E., and Blair, P. D. (2009). Input-output analysis: foundations and extensions, Cambridge University Press.
Morgenstern, R. D., Ho, M., Shih, J. S., and Zhang, X. (2004). The near-term impacts of carbon mitigation policies on manufacturing industries. Energy Policy, 32(16), 1825-1841.
Nakata, T., and Lamont, A. (2000). Analysis of the impacts of carbon taxes on energy systems in Japan. Energy Policy, 29(2), 159-166.
Nordhaus, W. D. (1990). Global warming: slowing the greenhouse express. Setting National Priorities, 192-209.
Nordstrom, H., and Vaughan, S. (1999). World Trade Organization, Special Studies 4, Trade and the Environment.
Pan, J., Phillips, J., and Chen, Y. (2008). China's balance of emissions embodied in trade: approaches to measurement and allocating international responsibility. Oxford Review of Economic Policy, 24(2), 354-376.
Park, H. C., and Heo, E. (2007). The direct and indirect household energy requirements in the Republic of Korea from 1980 to 2000—an input-output analysis. Energy Policy, 35(5), 2839-2851.
Peters, G. P., and Hertwich, E. G. (2006). Pollution embodied in trade: The Norwegian case. Global Environmental Change, 16(4), 379-387.
Rose, A., and Casler, S. (1996). Input–output structural decomposition analysis: a critical appraisal. Economic Systems Research, 8(1), 33-62.
Rose, A., and Chen, C. Y. (1991). Sources of change in energy use in the US economy, 1972–1982: a structural decomposition analysis. Resources and Energy, 13(1), 1-21.
Siriwardena, K., Wijayatunga, P., Fernando, W., Shrestha, R., and Attalage, R. (2007). Economy wide emission impacts of carbon and energy tax in electricity supply industry: A case study on Sri Lanka. Energy Conversion and Management, 48(7), 1975-1982.
Symons, E., Proops, J., and Gay, P. (1994). Carbon taxes, consumer demand and carbon dioxide emissions: a simulation analysis for the UK. Fiscal Studies, 15(2), 19-43.
Whalley, J., and Wigle, R. (1991). Cutting CO2 emissions: The effects of alternative policy approaches. The Energy Journal, 12(1), 109-124.
Wissema, W., and Dellink, R. (2007). AGE analysis of the impact of a carbon energy tax on the Irish economy. Ecological Economics, 61(4), 671-683.
Wood, R., and Lenzen, M. (2009). Structural path decomposition. Energy Economics, 31(3), 335-341.
Wu, R. H., and Chen, C. Y. (1990). On the application of input-output analysis to energy issues. Energy Economics, 12(1), 71-76.
Yang, H. Y., 2009. Economic effects of energy taxation: A computable general equilibrium analysis in the presence of parameter uncertainty (in Chinese). Taiwan Economic Forecast and Policy 40, 79-125.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊