跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/05 08:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱則維
研究生(外文):Tse-Wei Chiu
論文名稱:積分型終端滑模控制於太陽能市電併聯系統之研究
論文名稱(外文):Integral Terminal Sliding Mode Control for Grid-Tied Photovoltaic Systems
指導教授:邱謙松
指導教授(外文):Chian-Song Chiu
學位類別:碩士
校院名稱:中原大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:80
中文關鍵詞:太陽能發電系統最大功率點追蹤市電併聯積分型終端滑模控制
外文關鍵詞:Photovoltaic PowerMaximum Power Point Tracking (MPPT)ITSMCGrid-Tied System
相關次數:
  • 被引用被引用:1
  • 點閱點閱:255
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本論文將研製一太陽能市電併聯系統,即將太陽能電力經由電力電子轉換器轉換為交流電併入市電網路。為了達到高效能太陽能發電及穩定供電。以積分型終端滑模控制理論(Integral Terminal Sliding Mode Control,ITSMC)進行交流變流器之輸出電流的追蹤控制進而降低太陽能市電併聯系統之電流總諧波失真及解決最大功率點追蹤(Maximum Power Point Tracking,MPPT)問題。本論文所提方法之優點可以達到有限的系統收斂時間與穩態誤差消除,亦可提升控制系統對考慮參數不確定性與外在干擾的強健性,進一步結合模糊邏輯最大功率點搜尋演算法,使市電併聯系統可以達到最佳效能。最後透過模擬與實作結果顯示,以積分型終端滑模MPPT控制方式,可降低太陽能市電併聯系統之電流總諧波失真,以及有效達到太陽能發電最大功率輸出。


The purpose of thesis is to design a grid-tied photovoltaic (PV) power generation system with maximum power point tracking (MPPT) performance. First, power electronic converters transfer the PV power to the utility gird. In order to achieve high efficiency and decrease inverter current total harmonic distortion, we design an integral terminal sliding mode controller (ITSMC) for the current tracking of the PV inverter. Its advantages are finite time convergence, no steady-state error, and reduced chattering phenomenon compared with traditional sliding mode control. Moreover, robustness against parameter uncertainties and disturbances are also enhanced in the controller design. Then, by combining the fuzzy logic MPPT algorithm, the inverter current is kept at maximum power operational point. Finally, from simulation and experiment results, the ITSMC effectively drives the PV array system to the maximum power point and reduces inverter current total harmonic distortion.

目 錄


頁次
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 IX

第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 文獻回顧 2
1.4 論文大綱 4

第二章 太陽能發電系統 5
2.1 太陽能發電系統簡介 5
2.2 最大功率點追蹤方法 9
2.3 市電併聯控制架構介紹 12

第三章 市電併聯型太陽能最大功率點追蹤控制 14
3.1 模糊邏輯運算最大功率點追蹤策略 14
3.2 積分型終端滑模電流追蹤控制器設計 19
3.3 模擬結果 23

第四章 市電併聯系統設計 31
4.1 市電併聯系統架構硬體電路 31
4.2 升壓轉換器 32
4.3 功率變流器 34
4.4 回授與驅動電路 36
4.5 軟體規劃 37
4.6 孤島效應防制 42

第五章 實驗結果 44
5.1 系統規格 44
5.2 市電併聯控制器分析 45
5.3 太陽能最大功率點追蹤測試 46
5.4 孤島測試 63

第六章 結論 66
6.1 結論 66
6.2 未來展望 66

參考文獻 67
附錄 71
圖目錄


頁次
圖2.1 (a)單顆太陽能電池等效電路;(b)太陽能電池陣列等效電路 5
圖2.2 關係曲線 8
圖2.3 關係曲線 8
圖2.4擾動觀察法流程圖 10
圖2.5增量電導法流程圖 11
圖2.6獨立型太陽能發電系統 12
圖2.7市電併聯型太陽能發電系統 12
圖2.8常見併聯型太陽能發電系統 13
圖2.9電壓源型變流器 13
圖2.10電流源型變流器 13
圖3.1太陽能市電併聯型系統架構 14
圖3.2模糊邏輯運算基本架構 14
圖3.3 (a)輸入變數 (b)輸入變數 (c)輸出變數 15
圖3.4 (a) P-V曲線圖;(b) dP/dV-V曲線圖 16
圖3-5 模糊演算法輸入輸出平面波型 18
圖3.6市電併聯型變流器等效電路 19
圖3.7市電併聯型太陽能系統控制架構 20
圖3.8擾動觀察法之太陽能電池輸出功率(a) 0.01 (b) 0.001 25
圖3.9擾動觀察法之變流器輸出電流(a) 0.01 (b) 0.001 26
圖3.10模糊邏輯最大功率追蹤策略之太陽能電池輸出功率 27
圖3.11模糊邏輯最大功率追蹤策略之變流器輸出電流 27
圖3.12固定照度( )之太能陽電池輸出功率 28
圖3.13固定照度( )太能陽電池之變流器電流誤差 28
圖3.14變動照度之太能陽電池輸出功率 29
圖3.15變動照度之太能陽電池變流器電流誤差響應 29
圖3.16變動照度之太陽能電池輸出功率誤差 30
頁次
圖4.1市電併聯系統電路架構 31
圖4.2 Boost轉換器電路架構 32
圖4.3 Boost轉換器開關導通時等效電路 33
圖4.4 Boost轉換器開關截止時等效電路 33
圖4.5 Boost轉換器在CCM模式下電感電壓與電感電流波型 33
圖4.6全橋式變流器電路架構 34
圖4.7單極性電壓切換 35
圖4.8電壓回授電路 36
圖4.9電流回授電路 36
圖4.10開關驅動電路 37
圖4.11數位信號處理器之介面電路圖 38
圖4.12太陽能市電併聯系統最大功率追蹤控制器實現流程圖 41
圖4.13孤島現象防制決策樹 42
圖5.1變流器之四橋開關訊號波型 48
圖5.2變流器之 電壓與輸出電流波型 48
圖5.3 ITSMC 300W變流器輸出電流與市電電壓 49
圖5.4 ITSMC 600W變流器輸出電流與市電電壓 49
圖5.5 ITSMC 900W變流器輸出電流與市電電壓 50
圖5.6 PI control 300W變流器輸出電流與市電電壓 50
圖5.7 PI control 600W變流器輸出電流與市電電壓 51
圖5.8 PI control 900W變流器輸出電流與市電電壓 51
圖5.9變流器300W總諧波失真 (a)ITSMC;(b)PI control 52
圖5.10變流器600W總諧波失真 (a)ITSMC;(b)PI control 52
圖5.11變流器900W總諧波失真 (a)ITSMC;(b)PI control 52
圖5.12低照度下太陽能發電系統輸出電壓,(a) ITSMC;(b) SMC;(c) PI control 56
圖5.13低照度下太陽能發電系統輸出電流,(a) ITSMC;(b) SMC;(c) PI control 56
圖5.14低照度下太陽能發電系統輸出功率(---為最大功率),(a) ITSMC;(b) SMC;(c) PI
control 57
圖5.15低照度下太陽能發電系統電流誤差,(a) ITSMC;(b) SMC;(c) PI control 57
頁次
圖5.16 ITSMC 低功率下變流器輸出電流與市電電壓 58
圖5.17 SMC 低功率下變流器輸出電流與市電電壓 58
圖5.18 PI control 低功率下變流器輸出電流與市電電壓 58
圖5.19高照度下太陽能發電系統輸出電壓,(a) ITSMC;(b) SMC;(c) PI control 59
圖5.20高照度下太陽能發電系統輸出電流,(a) ITSMC;(b) SMC;(c) PI control 59
圖5.21高照度下太陽能發電系統輸出功率(---為最大功率),(a) ITSMC;(b) SMC;(c) PI control… 60
圖5.22高照度下太陽能發電系統電流誤差,(a) ITSMC;(b) SMC;(c) PI control 60
圖5.23 ITSMC control 高功率下變流器輸出電流與市電電壓 61
圖5.24 SMC 高功率下變流器輸出電流與市電電壓 61
圖5.25 PI control 高功率下變流器輸出電流與市電電壓 61
圖5.26日照變動下太陽能發電系統輸出電壓,(a) ITSMC;(b) SMC;(c) PI control 62
圖5.27日照變動下太陽能發電系統輸出電流,(a) ITSMC;(b) SMC;(c) PI control 62
圖5.28日照變動下太陽能發電系統輸出功率(---為最大功率),(a) ITSMC;(b) SMC;(c) PI control… 63
圖5.29孤島偵測架構圖 63
圖5.30孤島偵測之過電壓偵測 64
圖5.31孤島偵測之欠電壓偵測 65
附圖1太陽能市電併聯系統實驗平台 71










表目錄


頁次
表2.1太陽能電池單板75W電氣規格 7
表2.2太陽能電池陣列板900W電氣規格 7
表3.1本論文所使用模糊規則庫 17
表4.1數位信號處理器之PWM通道規劃表 39
表4.2電壓及電流回授信號量測範圍與A/D通道規劃表 39
表4.3 IEEE-929規範之電壓範圍與跳脫時間限制 42
表4.4 IEEE-929規範之頻率範圍與跳脫時間限制 43
表5.1硬體電路主要元件值 44
表5.2 IEEE-1547規範之諧波限制 45
表5.3變流器300W PI control 與 ITSMC 諧波比較 52
表5.4變流器600W PI control 與 ITSMC 諧波比較 53
表5.5變流器900W PI control 與 ITSMC 諧波比較 54
表5.6 IEEE-929規範之電壓範圍與跳脫時間限制 63

參考文獻
[1]M. Veerachary, T. Senjyu, and K. Uezato, “Voltage-based maximum power point tracking control of PV system,” IEEE Trans. Aerospace and Electronic Systems., vol. 38, no. 1, pp. 262-270, 2002.
[2]C. Rodriguez, and G. A. J. Amaratunga, “Analytic Solution to the Photovoltaic Maximum Power Point Problem,” IEEE Trans. Circuits and Systems Regular Paper, vol, 54, no. 9, pp. 2054-2060, 2007.
[3]D. Shmilovitz, “Photovoltaic maximum power point tracking employing load parameters,” IEEE ISIE., pp. 1037-1042, June. 2005.
[4]N. Femia, G Lisi, G. Petrone, G. Spagnuolo, and M. Vitelli, “Distributed Maximum Power Point Tracking of Photovoltaic Arrays: Novel Approach and Ssytem Analysis,” IEEE Trans. Ind. Electronics., vol. 55 no. 7, pp. 2610-2621, 2008.
[5]T. Noguchi, S. Togashi, and R. Nakamoto, “Short-current pulse-based maximum-power-point tracking method for multiple photovoltaic and converter module system,” IEEE Trans. Ind. Electronics., vol. 49, pp. 217-223, 2002.
[6]T. Esram, J. W. Kimball, P. T. Krein, P. L. Chapman, and P. Midya, “Dynamic Maximum Power Point Tracking of Photovoltaic Array Using Ripple Correlation Control,” IEEE Trans. Power Electronics., vol. 21, no. 5, pp. 1282-1291, 2006
[7]E. Koutroulis, K. Kalaitzakis, and N. C. Voulgaris, “Development of a microcontroller-based, photovoltaic maximum power point tracking control system,” IEEE Trans. Power Electronics., vol. 16, no. 1, pp. 46-54, 2001.
[8]C. Hua, J. Lin, and C. Shen, “Implementation of a dsp-controlled photovoltaic system with peak power tracking,” IEEE Trans. Ind. Electronics., vol. 45, no. 1, pp. 99-107, 1998.
[9]K. H. Hussein, I. Muta, T. Hoshino, and M. Osakada, “Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions,” IEEE Proc. Gener. Transm. Distrib, vol. 142, no. 1, pp. 59-64, 2001.
[10]Y. Yusof, S. H. Sayuti, M. A. Latif and M. Z. C. Wanik, “Modeling and simulation of maximum power point tracker for photovoltaic system,” IEEE PECon., pp. 88-93, Nov. 2004.
[11]T. L. Kottas, Y. S. Boutalis, and A. D. Karlis, “New Maximum Power Point Tracker for PV Arrays Using Fuzzy Controller in Close Cooperation With Fuzzy Cognitive Networks,” IEEE Trans. Energy Conversion, vol. 21, no. 3, pp. 793-803, 2006.


[12]T. Esram, and P. L. Chapman, “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques,” IEEE Trans. Energy Conversion, vol. 22, no. 2, pp. 439-449, 2007.
[13]S. Jain, and V. Agarwal, “Comparison of the performance of maximum power point tracking schemes applied to single-stage grid connected photovoltaic systems,” IET Electr. Power Appl., vol. 1, no. 5, pp. 753-762, 2007.
[14]R. Cardim, M.C.M. Teixeira, E. Assuncao, M.R. Covacic, “Variable-structure control design of switched systems with an application to a DC–DC Power converter,” IEEE Trans. Ind. Electronics, vol. 56, no. 9, pp. 3505-3513, 2009.
[15]K. K. Young, “Controller design for a manipulator using theory of variable structure systems,” IEEE Trans. Systems Man and Cybernetics, vol. 8, no. 2, pp. 67-81, 2006.
[16]S. T. Venkataraman, S. Gulati, “Terminal sliding modes: a new approach to nonlinear control synthesis,” IEEE Conf., Advanced Robotics, pp. 443, June. 1991.
[17]L. P. Fan, Y. Z. Yu, and Boshnakov, K., “Adaptive backstepping based terminal sliding mode control for DC-DC convertor,” IEEE Trans. Computer Application and System Modeling, vol. 9, pp. 323-327, 2010.
[18]Y. T. Lee, C. S. Chiu, and C. T. Shen, “Adaptive fuzzy terminal sliding mode control of DC-DC buck converters via PSoC,” IEEE International. Control Applications, pp. 1205- 1209, Sept. 2010.
[19]Y. Feng, J. F. Zheng, X. H. Yu, and N. Y. V. Truong, “Hybrid terminal sliding-mode observer design method for a permanent-magnet synchronous motor control system,” IEEE Trans. Ind. Electronics, vol. 56, pp. 3424- 3431, 2009.
[20]S. H. Li, M. M. Zhou, and X. H. Yu, “Disturbance observer based terminal sliding mode control method for PMSM speed regulation system,” IEEE International. Control Conference, pp. 6281- 6292, July. 2011.
[21]J. C. Kim, J. K. Ryu, J. H. Baek, K. S. Kim, and S. H. Kim, “Terminal sliding mode control in reaching and sliding dynamics with input limit,” IEEE Trans. Control Automation and Systems, pp. 2397- 2401, Oct. 2010.
[22]F. J. Chang, E. C. Chang, T. J. Liang, J. F. Chen, “Digital-signal-processor-base DC/AC inverter with integral-compensation terminal sliding-mode control,” IET. Power Electron, vol. 4 , no.1, pp. 159-167, 2011.
[23]B. G. Yu, Matsui. M, G. J. Yu, “A Correlation-Based Islanding-Detection Method Using Current-Magnitude Disturbance for PV system,” IEEE Trans. Ind. Electronics, vol.58, no. 7, pp. 2935-2943, 2011.

[24]J. H. Kim, J. G. Kim , Y. H. Ji, Y. C. Jung, C. Y. Won, “An Islanding Detection Method for a Grid-Connected System Base on the Goertzel Algorithm,” IEEE Trans. Power Electronics, vol. 26, no. 4, pp. 1049-1055, 2011.
[25]M. Ropp, “Evaluation of Islanding Detection Methods for Photovoltaic Utility Interactive Power Systems,” Report IEA PVPS, T5-09, 2002.
[26]F. S. Pai and S. J. Huang, “A Detection Algorithm for Islanding-Prevention of Dispersed Consumer-Owned Storage and Generating Units,” IEEE Trans. on Energy Conversion, Vol. 16, No. 4, pp. 346-351, 2001.
[27]A. Kitamura, H. Matsuda, F. Yamamoto, and T. Matsuuoka, “Islanding Phenomenon of Grid Connected PV Systems,” IEEE Photovoltaic Specialists Conf., pp. 1591-1594, Sep. 2000.
[28]G. A. Kern, “Sunsine300, Utility Interactive AC Module Anti-Islanding Test Results,” IEEE Photovoltaic Specialists Conf., pp. 1265-1268, Oct. 1997.
[29]W. Y. Chang, “A Hybrid Islanding Detection Method for Distributed Synchronous Generators,” IPEC Power Electronics Conference, pp. 1326-1330, June. 2010.
[30]Z. L. Yao, L. Xiao, and Y. G. Yan, “A novel multiple output grid-connected inverter based on DSP control,” IEEE Power Electronics Specialists Conference, pp. 317-322, June. 2008.
[31]X. L Xu, and J. Chen, S .J Li, K. Hu and L. Yu, “Photovoltaic generation grid-connected system based on DSP and FPGA control,” IEEE International Conference, pp. 317-322, April. 2011.
[32]S. C. Zheng, P. Z. Wang, and L.H. Ge, “Study on improving output current waveform of photovoltaic grid-connected system,” IEEE Ind. Electronics and Applications Conference, pp. 1-5, May. 2006.
[33]S. Jiang, D. Cao, F.Z. Peng, and Y. Li, “Grid-connected boost-half-bridge photovoltaic micro inverter system using repetitive current control and maximum power point tracking,” IEEE Applied Power Electronics Conference, pp.590-597, Feb. 2012.
[34]Q. X. Yang, J. L. Gao, R. Xu, and Y. Y. Ren, “Research on control strategy for single-phase grid-connected inverter based on proportional complex integral control,” IEEE Intelligent Human-Machine Systems and Cybernetics, vol. 2, pp. 108-111, 2010.
[35]B. Lv, Y. B. Che, and C. S. Wang, “Design of grid-connected photovoltaic system using soft cut-in control,” IEEE Trans. Sustainable Power Generation and Supply, pp. 1-5, April. 2009.


[36]W. F. Yang, and M. W. Li, “Design and simulation of single phase photovoltaic grid-connected system based on quasi-sliding mode control,” IEEE Control Automation and Systems Engineering., pp. 1-4, July. 2011.
[37]C. Dorofte, U. Borup, and F. Blaabjerg, “A combined two-method mppt control scheme for grid-connected photovoltaic system,” IEEE Power Electronics and Applications. Conf., pp. 1-10, 2005.
[38]F.Z. Amatoul, M.T. Lamchich, and A. Outzourhit, “Design control of DC/AC converter for a grid connected PV systems using Matlab/Simulink,” IEEE Power Electronics and Applications, pp. 1-7, April. 2011.
[39]E. Koutroulis, and F. Blaabjerg, “Design optimization of grid-connected PV inverters,” IEEE Applied Power Electronics Conference., pp. 691-698, March. 2011.
[40]J. Selvaraj, and N.A. Rahim, “Multilevel inverter for grid-connected PV system employing digital PI controller,” IEEE Ind. Electronics., vol.56, no. 1, pp. 149-158, 2009.
[41]J. Selvaraj, N.A. Rahim, and C. Krismadinata, “Digital PI current control for grid connected PV inverter,” IEEE Ind. Electronics and Applications, pp. 742-746, June. 2008.
[42]I. S. Kim, “Sliding mode controller for the single-phase grid-connected photovoltaic system,” Science Direct Applied Energy., vol. 83, pp. 1101-1115, 2006.
[43]沈志騰,「SEPIC電源轉換器在太陽能最大功率控制與LED調光控制的應用」,私立中原大學電機工程學系碩士論文,民國100年。
[44]洪冠群,「風力發電直流電能儲存器與交流市電併聯型轉換器之研製」,私立中原大學電機工程學系碩士論文,民國100年。
[45]梁適安編著,“交換式電源供器之理論與實務設計”,全華科技圖書股份有限公司,2009。
[46]江炫章,電力電子學第三版,全華圖書,台北,2005。
[47]林羿德,「太陽能市電併聯型變流器之終端滑模最大功率追蹤控制」,私立中原大學電機工程學系碩士論文,民國101年。

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊