跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/11 14:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張惟晴
研究生(外文):Wei-Ching Chang
論文名稱:實數離散分數傅立葉轉換之研究
論文名稱(外文):A Research on Real Discrete Fractional Fourier Transform
指導教授:許文良
指導教授(外文):Wen-Liang Hsue
學位類別:碩士
校院名稱:中原大學
系所名稱:通訊工程碩士學位學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:72
中文關鍵詞:特徵向量離散分數傅立葉轉換離散傅立葉轉換廣義離散傅立葉轉換廣義離散哈特利轉換離散哈特利轉換特徵值
外文關鍵詞:DFTgeneralized discrete Hartley transformeigenvectoreigenvaluegeneralized discrete Fourier transformdiscrete Hartley transformdiscrete fractional Fourier transform
相關次數:
  • 被引用被引用:2
  • 點閱點閱:412
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
兩個新的實數轉換以特徵分解的形式被建構:實數離散分數傅立葉轉換(real discrete fractional Fourier transform, RDFRFT)、實數離散分數哈特利轉換(real discrete fractional Hartley transform, RDFRHT)。此兩個轉換的特徵向量均為隨機,且每個特徵值均為1或-1。此兩轉換的特徵向量由隨機的DFT交替矩陣來求得。我們也探討RDFRFT與RDFRHT的關係。我們還定義了另一種基於近似對角矩陣的概念的RDFRHT。類似地,我們提出了實數廣義離散分數傅立葉轉換(real generalized discrete fractional Fourier transform, RGDFRFT)與實數廣義離散分數哈特利轉換(real generalized discrete fractional Hartley transform, RGDFRHT),和定義了另一種基於近似對角矩陣的概念的RGDFRHT。所有新提出的轉換都具有分數轉換須俱備的性質。最後把這些新提出的轉換應用在影像加密,並探討其強健性與敏感度。


Two new real fractional transforms with many parameters are constructed. They are the real discrete fractional Fourier transform (RDFRFT) and the real discrete fractional Hartley transform (RDFRHT). The eigenvectors of these two new transforms are all random, and they both have only two distinct eigenvalues: 1 or -1. Eigenvectors of both two transforms are constructed from random DFT-commuting matrices. Besides, relationship between the RDFRFT and the RDFRHT is discussed. We also propose an alternative definition of RDFRHT based on a diagonal-like matrix. Similarly, we propose the real generalized discrete fractional Fourier transform (RGDFRFT) and the real generalized discrete fractional Hartley transform (RGDFRHT) and an alternative definition of RGDFRHT based on a diagonal-like matrix. All of the proposed new transforms have required good properties to be fractional transforms. Finally, since outputs of proposed new transforms are random, they can be applied in image encryptions. In addition, we discuss the robustness and the sensitivity of these transforms for image encryption applications.


摘要……………………………………………………………………..I
Abstract……………………………………………………………..III
誌謝…………………………………………………………………IV
目錄…………………………………………………………………V
圖目錄…………………………………………………………….VII
表目錄……………………………………………………………VIII
第一章 緒論…..…………………………………………………..1
1.1前言……………………………………………………….1
1.2研究動機與目的………………………………………….3
第二章 離散分數傅立葉轉換...................................7
2.1 離散分數傅利葉轉換.............................................7
2.2 多參數離散分數傅利葉轉換................................16
2.3 隨機離散分數傅利葉轉換…………………………18
2.4 分數化的傅利葉轉換...........................................24
第三章 離散分數訊號轉換………………………………27
3.1 離散分數哈特利轉換………………………………27
3.2 廣義離散分數傅立葉轉換與哈特利轉換…………29
3.3 實數離散分數餘弦轉換..……………………………30
第四章 實數離散分數傅立葉轉換……………………33
4.1 實數的離散分數傅立葉轉換與哈特利轉換………33
4.2 近似對角矩陣的實數離散分數哈特利轉換………40
4.3 實數的廣義離散分數傅立葉轉換與哈特利轉換...42
4.4 近似對角矩陣的實數廣義離散分數哈特利轉換…50
第五章 模擬與分析探討………………………………….53
第六章 結論……………………………………………….....62
參考文獻........................................63

[1] L. B. Almeida, “The fractional Fourier transform and time-frequency representations,” IEEE Transactions on Signal Processing, vol. 42, pp. 3084–3091, Nov. 1994.
[2] S. C. Pei and M. H. Yeh, “Improved discrete fractional Fourier transform,” Optics Letters, vol. 22, pp. 1047–1049, Jul. 1997.
[3] J. H. McClellan and T. W. Parks, “Eigenvalue and eigenvector decomposition of the discrete Fourier transform,” IEEE Transactions on Audio and Electroacoustics, vol. AU-20, pp. 66–74, 1972.
[4] B. W. Dickinson and K. Steiglitz, “Eigenvectors and functions of the discrete Fourier transform,” IEEE Transactions on Acoustics, Speech and Signal Processing vol. ASSP-30, pp. 25–31, Jan. 1982.
[5] S. C. Pei and W. L. Hsue, “The multiple-parameter discrete fractional Fourier transform,” IEEE Signal Processing Letters, vol. 13, no. 6, pp. 329–332, Jun. 2006.
[6] S.C. Pei, and W. L. Hsue, "Random discrete fractional Fourier transform," IEEE Signal Processing Letters, vol. 16, no. 12, pp. 1015-1018, Dec. 2009.
[7] S. C. Pei, J. J. Ding, W. L. Hsue and K. W. Chang, ”Generalized commuting matrices and their eigenvectors for DFTs, offset DFTs, and other periodic operations,” IEEE Transactions on Signal Processing, vol. 56, no. 8, pp. 3891-3904, Aug. 2008.
[8] C. C. Shih, ”Fractionalization of Fourier transform,” Optics Communications, vol. 118, Issues 5–6, pp. 495–498, 1 Aug. 1995.
[9] S. C. Pei, C. C. Tseng, M. H. Yeh and J. J. Shyu, “Discrete fractional Hartley transform and Fourier transform,” IEEE Trans. Circuits Syst. Ⅱ, vol. 45, no. 6, pp. 665-675, Jun. 1998.
[10] C. C. Tseng, “Eigenvalues and eigenvectors of generalized DFT, generalized DHT, DCT-IV and DST-IV matrices,” IEEE Transactions on Signal Processing, vol. 50, no. 4, pp. 866-877, Apr. 2002.
[11] I. Venturini and P. Duhamel,“Reality preserving fractional transform,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., pp. V205-V208, 2004.
[12] S.C. Pei, and W. L. Hsue, ”Tridiagonal commuting matrices and fractionalizations of DCT and DST matrices of types Ⅰ,Ⅳ,Ⅴ, and Ⅷ,” IEEE Transactions on Signal Processing, vol. 56, no. 6, pp. 2357-2369, Jun. 2008.
[13] 張惟晴;許文良,“實數離散分數傅立葉轉換與哈特利轉換”, 2012 , National Symposium on Telecommunications。

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊