參考文獻
[1]Huang YY, Sharma SK, Carroll J, Hamblin MR, (2011) Biphasic dose response in low level light therapy - an update. Dose-response. 9(4):602-618.
[2]Hou JF, Zhang H, Yuan X, Li J, Wei YJ, Hu SS, (2008) In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med. 40(10):726-733.
[3]Tsai WC, Hsu CC, Pang JH, Lin MS, Chen YH, Liang FC, (2012) Low-level laser irradiation stimulates tenocyte migration with up-regulation of dynamin II expression. PloS one. 7(5):e38235.
[4]Caplan AI, Dennis JE, (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem. 98(5):1076-1084.
[5]Yagi H, Soto-Gutierrez A, Parekkadan B, Kitagawa Y, Tompkins RG, Kobayashi N, Yarmush ML, (2010) Mesenchymal stem cells: mechanisms of immunomodulation and homing. Cell transplant. 19(6):667-679.
[6]Li WT, Leu YC, Wu JL, (2010) Red-light light-emitting diode irradiation increases the proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells. Photomed Laser Surg. Suppl 1:S157-65.
[7] 許泰毓 (2008) 低能量近紅外光刺激對大鼠骨髓間葉幹細胞生理生化之影響. 碩士論文: 中原大學生物醫學工程研究所.[8] 陳志威 (2011) 紅光與近紅外光光照刺激大鼠骨髓間葉幹細胞遷移影響及其機制探討. 碩士論文: 中原大學生物醫學工程研究所.[9]Murdoch C, (2000) CXCR4: chemokine receptor extraordinaire. Immunol rev. 177:175-184.
[10]Wear JO, Ark LR, Williams J, Ala H, (1969) The laster and its biomedical application. South Med J. 62:588-592.
[11]Baratto L, Calza L, Capra R, Gallamini M, Giardino L, Giuliani A, Lorenzini L, Traverso S, (2011) Ultra-low-level laser therapy. Lasers Med Sci. 26(1):103-112.
[12]Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M, (2005) Low-level laser therapy for wound healing mechanism and efficacy. Dermatol Surg. 31(3):334-340.
[13]Prabhu V, Rao SB, Rao NB, Aithal KB, Kumar P, Mahato KK, (2010) Development and evaluation of fiber optic probe-based helium-neon low-level laser therapy system for tissue regeneration--an in vivo experimental study. Photochem Photobiol. 86:1364-1372.
[14]Shukla S, Sahu K, Verma Y, Rao KD, Dube A, Gupta PK, (2010) Effect of helium-neon laser irradiation on hair follicle growth cycle of Swiss albino mice. Skin Pharmacol Physiol. 23(2):79-85.
[15]Houreld N, Abrahamse H, (2010) Low-intensity laser irradiation stimulates wound healing in diabetic wounded fibroblast cells (WS1). Diabetes Technol Ther. 12(12):971-978.
[16]Moriyama Y, Moriyama EH, Blackmore K, Akens MK, Lilge L, (2005) In vivo study of the inflammatory modulating effects of low-level laser therapy on iNOS expression using bioluminescence imaging. Photochem Photobiol. 81(6):1351-1355.
[17]Toomarian L, Fekrazad R, Tadayon N, Ramezani J, Tuner J, (2012) Stimulatory effect of low-level laser therapy on root development of rat molars: a preliminary study. Lasers Med Sci. 27(3):537-542.
[18]Bouvet-Gerbettaz S, Merigo E, Rocca JP, Carle GF, Rochet N, (2009) Effects of low-level laser therapy on proliferation and differentiation of murine bone marrow cells into osteoblasts and osteoclasts. Lasers Surg Med. 41(4):291-297.
[19]Eichler M, Lavi R, Shainberg A, Lubart R, (2005) Flavins are source of visible-light-induced free radical formation in cells. Lasers Surg Med. 37(4):314-319.
[20]Chen AC, Arany PR, Huang YY, Tomkinson EM, Sharma SK, Kharkwal GB, Saleem T, Mooney D, Yull FE, Blackwell TS, Hamblin MR, (2011) Low-level laser therapy activates NF-κB via generation of reactive oxygen species in mouse embryonic fibroblasts. PloS one. 6(7):e22453.
[21] Karu T, (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B. 49(1):1-17.
[22]Cantrell DA, (2001) Phosphoinositide 3-kinase signalling pathways. J Cell Sci. 114(8):1439-1445.
[23]Chen CH, Hung HS, Hsu SH, (2008) Low-energy laser irradiation increases endothelial cell proliferation, migration, and eNOS gene expression possibly via PI3K signal pathway. Lasers Surg Med. 40(1):46-54.
[24]Zhang L, Xing D, Gao X, Wu S, (2009) Low-power laser irradiation promotes cell proliferation by activating PI3K/Akt pathway. J Cell Physiol. 219(3):553-562.
[25]Zhang J, Xing D, Gao X, (2008) Low-power laser irradiation activates Src tyrosine kinase through reactive oxygen species-mediated signaling pathway. J Cell Physiol. 217(2):518-528.
[26]Gao X, Chen T, Xing D, Wang F, Pei Y, Wei X, (2006) Single cell analysis of PKC activation during proliferation and apoptosis induced by laser irradiation. J Cell Physiol. 206(2):441-448.
[27]Miyata H, Genma T, Ohshima M, Yamaguchi Y, Hayashi M, Takeichi O, Ogiso B, Otsuka K, (2006) Mitogen-activated protein kinase/extracellular signal-regulated protein kinase activation of cultured human dental pulp cells by low-power gallium-aluminium-arsenic laser irradiation. Int Endod J. 39(3):238-244.
[28]Zhang L, Zhang Y, Xing D, (2010) LPLI inhibits apoptosis upstream of Bax translocation via a GSK-3beta-inactivation mechanism. J Cell Physiol. 224(1):218-228.
[29]Liu ZJ, Zhuge Y, Velazquez OC, (2009) Trafficking and differentiation of mesenchymal stem cells. J Cell Biochem. 106(6):984-991.
[30]Zhang D, Huang W, Dai B, Zhao T, Ashraf A, Millard RW, Ashraf M, Wang Y, (2010) Genetically manipulated progenitor cell sheet with diprotin A improves myocardial function and repair of infarcted hearts. Am J Physiol Heart Circ Physiol. 299(5):H1339-H1347.
[31]Wagner J, Kean T, Young R, Dennis JE, Caplan AI, (2009) Optimizing mesenchymal stem cell-based therapeutics. Curr Opin Biotechnol. 20(5):531-536.
[32]Ito H, (2011) Chemokines in mesenchymal stem cell therapy for bone repair: a novel concept of recruiting mesenchymal stem cells and the possible cell sources. Mod Rheumatol. 21(2):113-121.
[33]Li L, Jiang J, (2011) Regulatory factors of mesenchymal stem cell migration into injured tissues and their signal transduction mechanisms. Front Med. 5(1):33-9.
[34]Ganju RK, Brubaker SA, Meyer J, Dutt P, Yang Y, Qin S, Newman W, Groopman JE, (1998) The alpha-chemokine, stromal cell-derived factor-1alpha, binds to the transmembrane G-protein-coupled CXCR-4 receptor and activates multiple signal transduction pathways. J Biol Chem. 273(36):23169-23175.
[35]Zlotnik A, Yoshie O, (2000) Chemokines a new classification system and their role in immunity. Immunity. 12:121–127.
[36]Shirozu M, Nakano T, Inazawa J, Tashiro K, Tada H, Shinohara T, Honjo T, (1995) Structure and Chromosomal Localization of the Human Stromal Cell Derived Factor 1 (SDF1) Gene. Genomics. 28:495-500.
[37]Ahr B, Denizot M, Robert-Hebmann V, Brelot A, Biard-Piechaczyk M, (2005) Identification of the cytoplasmic domains of CXCR4 involved in Jak2 and STAT3 phosphorylation. J Biol Chem. 280(8):6692-6700.
[38]Sharma M, Afrin F, Satija N, Tripathi RP, Gangenahalli GU, (2011) Stromal-derived factor-1/CXCR4 signaling: indispensable role in homing and engraftment of hematopoietic stem cells in bone marrow. Stem Cells Dev. 20(6):933-946.
[39] Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P, (2008) Molecular Biology of the Cell, 5th Edition. New York:Garland Science.
[40]Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR, (2003) Cell migration: integrating signals from front to back. Science. 302(5651):1704-1709.
[41]Schaller MD, Borgman CA, Cobb BS, Vines RR, Reynolds AB, Parsons JT, (1992) pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci. 89(11):5192-5196.
[42]Mitra SK, Hanson DA, Schlaepfer DD, (2005) Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol. 6(1):56-68.
[43]Yun SP, Ryu JM, Han HJ, (2011) Involvement of beta1-integrin via PIP complex and FAK/paxillin in dexamethasone-induced human mesenchymal stem cells migration. J Cell Physiol. 226(3):683-692.
[44]Cox BD, Natarajan M, Stettner MR, Gladson CL, (2006) New concepts regarding focal adhesion kinase promotion of cell migration and proliferation. J Cell Biochem. 99(1):35-52.
[45]Wu X, Suetsugu S, Cooper LA, Takenawa T, Guan JL, (2004) Focal adhesion kinase regulation of N-WASP subcellular localization and function. J Biol Chem. 279(10):9565-9576.
[46] Meenderink LM, Ryzhova LM, Donato DM, Gochberg DF, Kaverina I, Hanks SK. (2010) P130Cas Src-binding and substrate domains have distinct roles in sustaining focal adhesion disassembly and promoting cell migration. PLoS One. 5(10):e13412.
[47]Esparza J, Vilardell C, Calvo J, Juan M, Vives J, Urbano-Márquez A, Yagüe J, Cid MC, (1999) Fibronectin upregulates gelatinase B (MMP-9) and induces coordinated expression of gelatinase A (MMP-2) and its activator MT1-MMP (MMP-14) by human T lymphocyte cell lines. A process repressed through RAS/MAP kinase signaling pathways. Blood. 94(8):2754-66.
[48]Visse R, Nagase H, (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry.
Circ Res. 92(8):827-839.
[49]Das A, Yaqoob U, Mehta D, Shah VH, (2009) FXR promotes endothelial cell motility through coordinated regulation of FAK and MMP-9. Arterioscler Thromb Vasc Biol. 29(4):562-570
[50]Cheung PY, Sawicki G, Wozniak M, Wang W, Radomski MW, Schulz R, (2000) Matrix Metalloproteinase-2 Contributes to ischemia-reperfusion injury in the heart. Circulation. 101:1833-1839..
[51]Itoh Y, (2006) MT1-MMP: a key regulator of cell migration in tissue. IUBMB life. 58(10):589-596.
[52]Ries C, Egea V, Karow M, Kolb H, Jochum M, Neth P, (2007) MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood. 109(9):4055-4063.
[53]Ferns G, Shams S, Shafi S, (2006) Heat shock protein 27: its potential role in vascular disease. Int J Exp Pathol. 87(4):253-274.
[54]Lee JW, Kwak HJ, Lee JJ, Kim YN, Park MJ, Jung SE, Hong SI, Lee JH, Lee JS, (2008) HSP27 regulates cell adhesion and invasion via modulation of focal adhesion kinase and MMP-2 expression. Eur J Cell Biol. 87(6):377-387.
[55]Wegele H, Muller L, Buchner J, (2004) Hsp70 and Hsp90--a relay team for protein folding. Rev Physiol Biochem Pharmacol. 151:1-44.
[56]Koyasu S, Nishida E, Kadowaki T, Matsuzaki F, Iida K, Harada F, Kasuga M, Sakai H, Yahara I, (1986) Two mammalian heat shock proteins, HSP90 and HSP100, are actin-binding proteins. Proc Natl Acad Sci U S A. 83(21):8054-8058.
[57]Simard JP, Reynolds DN, Kraguljac AP, Smith GS, Mosser DD, (2011) Overexpression of HSP70 inhibits cofilin phosphorylation and promotes lymphocyte migration in heat-stressed cells. J Cell Sci. 124(14):2367-2374.
[58] Picard D, (2004) Hsp90 invades the outside. Nat Cell Biol. 6(6) :479-480.
[59] Walsh N, Larkin AM, Swan N, Conlon K, Dowling P, Mcdermott R,
Clynes M, (2011) RNAi knockdown of Hop (Hsp70/Hsp90 organising protein) decreases invasion via MMP-2 down regulation. Cancer Lett.
306:180-189.
[60]Zou C, Luo Q, Qin J, Shi Y, Yang L, Ju B, Song G, (2012) Osteopontin promotes mesenchymal stem cell migration and lessens cell stiffness via integrin beta1, FAK, and ERK pathways. Cell Biochem Biophys. 65(3):455-462.
[61] Song X, Wang X, Zhuo W, Shi H, Feng D, Sun Y, Liang Y, Fu Y, Zhou D, Luo Y, (2010) The regulatory mechanism of extracellular Hsp90 on matrix metalloproteinase-2 processing and tumor angiogenesis. J Biol Chem. 285(51):40039-40049.
[62] Picard D, (2004) Hsp90 invades the outside. Nat Cell Biol. 6(6):479-480.
[63] Tang CH, Tan TW, Fu WM, Yang RS, (2008) Involvement of matrix metalloproteinase-9 in stromal cell-derived factor-1/CXCR4 pathway of lung cancer metastasis. Carcinogenesis. 29(1):35-43.
[64] Rehman AO, Wang CY, (2009) CXCL12/SDF-1α Activates NF-κB and promotes oral cancer invasion through the Carma3/Bcl10/Malt1 complex. Int J Oral Sci. 1(3):105-118.
[65] Annunziata CM, Stavnes HT, Kleinberg L, Berner A, Hernandez LF, Birrer MJ, Steinberg SM, Davidson B, Kohn EC, (2010) NF-κB transcription factors are co-expressed and convey poor outcome in ovarian cancer. Cancer. 116(13):3276-3284.
[66] Lu DY, Tang CH, Yeh WL, Wong KL, Lin CP, Chen YH, Lai CH, Chen YF, Leung YM, Fu WM, (2009) SDF-1alpha up-regulates interleukin-6 through CXCR4, PI3K/Akt, ERK, and NF-kappaB-dependent pathway in microglia. Eur J Pharmacol. 613:146-154.
[67] Oron U, Maltz L, Tuby H, Sorin V, Czerniak A, (2010) Enhanced liver regeneration following acute hepatectomy by low-level laser therapy. Photomed Laser Surg. 28(5):675-678.
[68] Tuby H, Maltz L, Oron U, (2011) Induction of autologous mesenchymal stem cells in the bone marrow by low-level laser therapy has profound beneficial effects on the infarcted rat heart. Laser Surg Med. 43:401-409.
[69] Takino T, Sato H, Shinagawa A, Seiki M, (1995) Identification of the second membrane-type matrix metalloproteinase (MT-MMP-2) gene from a human placenta cDNA library. MT-MMPs form a unique membrane-type subclass in the MMP family. J Biol Chem. 270(39):23013-23020.
[70]Sen R, Baltimore D, (1986) Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell. 47(6):921-8.
[71]Hoffmann A, Levchenko A, Scott ML, Baltimore D, (2002) The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science. 298(5596):1241-1245.
[72]Pujalte I, Passagne I, Brouillaud B, Treguer M, Durand E, Ohayon-Courtes C, L'Azou B, (2011) Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol. 8:10.
[73]Ryu CH, Park SA, Kim SM, Lim JY, Jeong CH, Jun JA, Oh JH, Park SH, Oh WI, Jeun SS, (2010) Migration of human umbilical cord blood mesenchymal stem cells mediated by stromal cell-derived factor-1/CXCR4 axis via Akt, ERK, and p38 signal transduction pathways. Biochem Biophys Res Commun. 398(1):105-110.
[74]Rosazza C, Escoffre JM, Zumbusch A, Rols MP, (2011) The actin cytoskeleton has an active role in the electrotransfer of plasmid DNA in mammalian cells. Mol Ther. 19(5):913-921.
[75]Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC, (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391(6669):806-811.
[76]Hammond SM, (2005) Dicing and slicing: the core machinery of the RNA interference pathway. FEBS Lett. 579(26):5822-5829.
[77] Huang YC, Hsiao YC, Chen YJ, Wei YY, Lai TH, Tang CH, (2007) Stromal cell-derived factor-1 enhances motility and integrin up-regulation through CXCR4, ERK and NF-κB-dependent pathway in human lung cancer cells. Biochem Pharmacol. 74:1702-1712.
[78] Huang D, Khoe M, Befekadu M, Chung S, Takata Y, Ilic D, Bryer-Ash M, (2007) Focal adhesion kinase mediates cell survival via NF-κB and ERK signaling pathways. Am J Physiol Cell Physiol. 292:C1339-C1352.
[79] Patricia AM, Snoek-van B, Von den Hoff JW, (2005) Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors. BioTechniques. 38:73-83.
[80]Xie TX, Wei D, Liu M, Gao AC, Ali-Osman F, Sawaya R, Huang S, (2004) Stat3 activation regulates the expression of matrix metalloproteinase-2 and tumor invasion and metastasis. Oncogene. 23(20):3550-3560.
[81] Gilmore AP, Romer LH, (1996) Inhibition of focal adhesion kinase (FAK) signaling in focal adhesions decreases cell motility and proliferation. Mol. Biol. Cell. 7:1209-1224.
[82]Wang K, Zhao X, Kuang C, Qian D, Wang H, Jiang H, Deng M, Huang L, (2012) Overexpression of SDF-1alpha Enhanced Migration and Engraftment of Cardiac Stem Cells and Reduced Infarcted Size via CXCR4/PI3K Pathway. PloS one. 7(9):e43922.
[83] Tang CH, Chuang JY, Fong YC, Maa MC, Way TD, Huang CH, (2008) Bone-derived SDF-1 stimulates IL-6 release via CXCR4, ERK and NF-κB pathways and promotes osteoclastogenesis in human oral cancer cells. Carcinogenesis. 29(8):1483-1492.
[84]Yu X, Chen D, Zhang Y, Wu X, Huang Z, Zhou H, Zhang Y, Zhang Z, (2012) Overexpression of CXCR4 in mesenchymal stem cells promotes migration, neuroprotection and angiogenesis in a rat model of stroke. J Neurol Sci. 316(1-2):141-149.
[85]Wynn RF, Hart CA, Corradi-Perini C, O'Neill L, Evans CA, Wraith JE, Fairbairn LJ, Bellantuono I, (2004) A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood. 104(9):2643-2645.
[86] Shen Y, Ma Y, Gao M, Lai Y, Wang G, Yu Q, Cui F, Liu X, (2013) Integrins-FAK-Rho GTPases pathway in endothelial cells sense and
response to surface wettability of plasma nanocoatings. ACS Appl. Mater. Interfaces. 5:5112-5121.
[87] Hanna S, El-Sibai M, (2013) Signaling networks of Rho GTPases in cell motility. Cell Signal. 25(10):1955-1961.
[88]Ilić D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N, Nomura S, Fujimoto J, Okada M, Yamamoto T, (1995) Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature. 377:539-544.
[89] Moyer RA, Wendt MK, Johanesen PA, Turner JR, Dwinell MB, (2007) Rho activation regulates CXCL12 chemokine stimulated actin rearrangement and restitution in model intestinal epithelia. Lab Invest. 87(8):807-817.
[90] Adiguzel E, Hou G, Sabatini PJB, Bendeck MP, (2013) Type VIII collagen signals via β1 integrin and RhoA to regulate MMP-2 expression and smooth muscle cell migration. Matrix Biol. 32(6):332-341.
[91] 呂曜竹 (2007) 紅光發光二極體光照對大鼠骨髓間葉幹細胞生長及分化之影響. 碩士論文: 中原大學生物醫學工程研究所.[92] Liu X, Zhou C, Li Y, Ji Y, Xu G, Wang X, Yan J, (2013) SDF-1 promotes endochondral bone repair during fracture healing at the traumatic brain injury condition. PloS one. 8(1):e54077.
[93] Ferrand J, Lehours P, Schmid-Alliana A, Me´graud F, Varon C, (2011) Helicobacter pylori Infection of gastrointestinal epithelial cells in vitro induces mesenchymal stem cell migration through an NF-κB-dependent Pathway. PloS one. 6(12):e29007.
[94] Kawai K, Xue F, Takahara T, Kudo H, Yata Y, Zhang W, Sugiyama T, (2012) Matrix metalloproteinase-9 contributes to the mobilization of bone marrow cells in the injured liver. Cell Transplant. 21:453-464.
[95] Cao J, Wang L, Du ZJ, Liu P, Zhang YB, Sui JF, Liu YP, Lei DL, (2013) Recruitment of exogenous mesenchymal stem cells inmandibular distraction osteogenesis by the stromalcell-derived factor-1/chemokine receptor-4 pathway in rats. Brit J Oral Max Surg. 51:1-5.
[96] Guang LG, Boskey AL, Zhu W, (2013) Age-related CXC chemokine receptor-4-deficiency impairs osteogenicdifferentiation potency of mouse bone marrow mesenchymal stromalstem cells. Int J Biochem Cell Biol. 46:1-8.
[97] Liu N, Tian J, Cheng J, Zhang J, (2013) Directional migration of CXCR4 gene-modified bone marrow-derived mesenchymal stem cells to the kidney area after acute kidney injury. J Cell Biochem. 114(9):1-39.