跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/02 15:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝岳書
研究生(外文):Yueh-Shu Hsieh
論文名稱:大氣細懸浮微粒金屬成份特徵及來源貢獻分析研究
論文名稱(外文):Charaterisics of Metal Compositions and Source Contributions of Atmospheric Fine Particulate
指導教授:楊錫賢楊錫賢引用關係
指導教授(外文):Hsi-Hsien Yang
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:環境工程與管理系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:163
中文關鍵詞:化學質量平衡法主成份分析加強因子分析法金屬元素懸浮微粒
外文關鍵詞:PM2.5Principal Component Analysis (PCA)metal compositionsChemical Mass Balance (CMB)Enrichment Factor (EF)
相關次數:
  • 被引用被引用:17
  • 點閱點閱:2301
  • 評分評分:
  • 下載下載:176
  • 收藏至我的研究室書目清單書目收藏:1
本研究於2011年7月至2012年6月解析北部地區不同季節大氣及特定對象細懸浮微粒 (PM2.5) 質量濃度。將採集之樣品進行金屬元素分析,並應用加強因子法分析微粒組成與污染源的相關性,之後使用主成份分析對PM2.5污染源作定性分析,瞭解懸浮微粒之可能污染源,最後以化學質量平衡法作定量分析,推估各地區對受體點污染源貢獻量。
本研究於2011年至2012年期間監測北部地區季節性大氣PM2.5及特定區域質量濃度。研究結果顯示,四縣市同步採樣於冬、春季期間測得之懸浮微粒質量濃度高於夏季與秋季期間;污染物傳遞採樣若受到上下風傳遞關係,則導致導致PM2.5濃度有遞增情形產生;工業區採樣平日測得之PM2.5濃度平均值大多高於假日;柴油車較多之臺北港及轉運站採樣結果顯示,日間PM2.5濃度高出夜間1.24 ~ 1.69倍;公車專用道採樣中,假日PM2.5濃度最高時段為上午,而中午次高,PM2.5濃度最低為下午,平日則與假日相反,下午測得PM2.5濃度最高,其次為中午,上午則為最低,其測值上午、中午與下午三個時段互有高低,並無一定趨勢;由交通密集道路PM2.5採樣結果得知,平日上午、中午及下午為假日之2.83、1.92及1.40倍,顯示民眾於平日暴露PM2.5濃度較假日高。此外,本研究在化學組成方面,大氣微粒中之金屬元素以Al、Ca、Fe、K、Mg與Na所含濃度最高為主要金屬元素;工業區金屬以Cu、Mn、Pb及Zn元素較一般大氣高;柴油車密集區測得之金屬元素以Al、Ca、Cr、Cu、Fe及Ni較大氣高出許多;隧道/地下道、地下停車場中,較一般大氣含量高之金屬元素為Cr、Cu、Fe、Mn及Zn。在應用加強因子分析法分析結果顯示,金屬元素Cu、K、Na、Ni、Pb來自非土壤之其他來源;應用主成份分析法進行大氣四縣市同步採樣的分析,結果共分為四個因子,因子1至因子4分別定義為混合污染源、海水飛沫、重油燃燒貢獻及地殼來源;應用化學質量平衡法模式解析北部地區季節性PM2.5貢獻污染源,綜觀北部地區季節性PM2.5貢獻污染源以硫酸鹽貢獻量最大,其次為機動車輛,而後為烹飪。
In this study, the atmospheric fine particulate (PM2.5) in different seasons were collected from July, 2011 to June, 2012 in Northern Taiwan. The metal elements were also analyzed. Enrichment (EF), Principal Component Analysis (PCA) and Chemical Mass Balance (CMB) were applied to estimate the contribution of emission sources for the receptor sites. The results show that the PM2.5 mass concentration in winter and spring are higher than summer and autumn. PM2.5 concentrations are higher for the samplers at the right downwind than the upwind sitesof the industrial plants. PM2.5 concentrations measured on weekdays at industrial areas are mostly higher than those on holidays. The Port of Taipei and bus station have more diesel cars. PM2.5 concentration at the two sites in daytime is 1.24 ~ 1.69 times higher than in nighttime. For bus-only lane sampling, the PM2.5 concentration is highest in the morning for holidays, PM2.5 concentration is lowest in the afternoon. For weekdays, PM2.5 concentration is highest in the afternoon and lowest in the morning. PM2.5 concentrations for heavy traffic road at morning, noon and afternoon time in weekdays are 2.83, 1.92 and 1.40 times higher than holidays, it indicates that people might be exposed to higher PM2.5 concentration in weekdays than inholidays. The compositions of Al, Ca, Fe, K, Mg and Na are high in the atmospheric PM2.5, as the metals Cu, Mn, Pb and Zn are higher at the industrial sites. Al, Ca, Cr, Cu, Fe and Ni are much higher at the sites with more diesel vehicles. For the sties of tunnel/underground and underground parking lot, the metals Cr, Cu, Fe, Mn and Zn are siginificantly higher. The result of Enrichment Factor analysis reveals that the metal compositions Cu, K, Na, Ni and Pb are from non-soil sources. Principal Component Analysis results show that there are four factors. Factor 1 to factor 4 are defined as mixed pollution source, sea-salt, heavy oil burning contribution and crustal source, respectively. Chemical Mass Balance results show that secondary sulfate is the major contribution source, followed by motor vehicle and cooking.
總目錄

中文摘要 I
Abstract III
總目錄 V
表目錄 IX
第一章 前言 1
1-1 研究動機 1
1-2 研究內容與目標 2
第二章 文獻回顧 4
2-1 懸浮微粒 4
2-1-1 懸浮微粒之定義 4
2-1-2 懸浮微粒對人體的危害 4
2-1-3 懸浮微粒之來源 7
2-2 懸浮微粒之季節性質量濃度變化 8
2-3 不同特性環境PM2.5量測 10
2-3-1 隧道、地下道及地下停車場 10
2-3-2 交通密集區域 13
2-4 大氣懸浮微中金屬成份來源與特性 17
2-5 來源分析 20
2-5-1 加強因子分析法 20
2-5-2 主成份分析 22
2-5-3 受體模式 23
第三章 實驗設備與方法 29
3-1懸浮微粒採樣 29
3-1-1採樣位置之選定 31
3-1-2採樣時間 37
3-1-3採樣設備 38
3-1-4質量濃度計算方式 40
3-1-5 採樣濾紙與前處理 40
3-2 金屬成份分析方法 41
3-3 來源分析 43
3-3-1 加強因子分析法 44
3-3-2 主成份分析 45
3-3-3 化學質量平衡法 49
第四章 結果與討論 56
4-1 北部空品區不同環境懸浮微粒質量濃度 56
4-1-1 大氣環境 56
4-1-1-1 四縣市同步 56
4-1-1-2 污染物傳遞 58
4-1-2 特定對象 63
4-1-2-1 工業區 63
4-1-2-2 柴油車密集區 69
4-1-2-3 半密閉空間 72
4-1-3 交通密集區 75
4-1-3-1 公車專用道 75
4-1-3-2 交通密集道路 77
4-2 北部空品區不同環境懸浮微粒金屬成份組成份析 81
4-2-1 大氣環境 81
4-2-1-1 四縣市同步 81
4-2-1-2 污染物傳遞 84
4-2-2 特定對象 85
4-2-2-1 工業區 85
4-2-2-2 柴油車密集區 88
4-2-2-3 半密閉空間 92
4-2-3 交通密集區 95
4-2-3-1 公車專用道 95
4-2-3-2 交通密集道路 96
4-3 PM2.5及來源分析 99
4-3-1 重建質量濃度 99
4-3-2 加強因子分析法 105
4-3-3 主成份分析 107
4-3-4 化學質量平衡法 109
第五章 結論 121
參考文獻 125
附錄 品質保證與品質控制 143

表目錄
表2-1 隧道及停車場PM2.5曝露之相關文獻整理 (mg/m3) 16
表2-2 郊區及交通路口PM2.5曝露之相關文獻整理 (mg/m3) 19
表3-1 粒狀物空氣監測採樣規劃表 26
表4-1 各成份佔PM2.5中之比例文獻整理文獻整理 97
表4-2 重建氣膠質量濃度的元素組成與轉換因子 100
表4-3 質量重建後PM2.5之比例文獻整理 101
表4-4 北部空品區內土壤金屬元素含量檢測值 (mg/kg) 103
表4-5 大氣PM2.5金屬成份之主成份分析因子負荷 105
表4-6 四縣市同步第一季100年9月5日各採樣點PM2.5受體模式分析結果 110
表4-7 四縣市同步第一季100年9月6日各採樣點PM2.5受體模式分析結果 111
表4-8 四縣市同步第二季100年11月15日各採樣點PM2.5受體模式分析結果 112
表4-9 四縣市同步第二季100年11月16日各採樣點PM2.5受體模式分析結果 113
表4-10 四縣市同步第三季101年1月10日各採樣點PM2.5受體模式分析結果 114
表4-11 四縣市同步第三季101年1月11日各採樣點PM2.5受體模式分析結果 115
表4-12 四縣市同步第四季101年4月23日各採樣點PM2.5受體模式分析結果 116
表4-13 四縣市同步第四季101年4月24日各採樣點PM2.5受體模式分析結果 117

圖目錄
圖3-1 四縣市同步採樣位置圖 26
圖3-2 污染物傳遞採樣位置圖 27
圖3-3 土城工業區位置圖 28
圖3-4 龜山工業區位置圖 28
圖3-5 各轉運站位置圖 29
圖3-6 隧道、地下道、停車場位置圖 30
圖3-7 公車專用道採樣點位置圖 31
圖3-8 公車專用道採樣點位置圖 32
圖3-9 TE-6070D高流量採樣器外觀 34
圖3-10 PM10衝擊式採樣頭 34
圖3-11 分粒 (2.5-10與2.5 mm) 衝擊板 34
圖3-12 PM2.5濾紙底板 34
圖3-13 感應耦合電漿光學放射光譜儀 37
圖3-14 金屬元素分析流程 38
圖3-15 CMB 8.2模式操作步驟 50
圖4-1 四縣市同步PM2.5檢測結果 53
圖4-2 污染物傳遞PM2.5檢測結果 54
圖4-3 第一季污染物傳遞100年9月13日風向 55
圖4-4 第一季污染物傳遞100年9月14日風向 56
圖4-5 第一季污染物傳遞100年9月15日風向 56
圖4-6 第二季污染物傳遞101年4月16日風向 57
圖4-7 第二季污染物傳遞101年4月17日風向 57
圖4-8 土城工業區採樣點位置圖 59
圖4-9 土城工業區PM2.5檢測結果 59
圖4-10 土城工業區採樣期間風向分析圖 60
圖4-11 龜山工業區採樣點位置圖 62
圖4-12 龜山工業區PM2.5檢測結果 62
圖4-13 龜山工業區採樣期間風向分析圖 63
圖4-14 各季臺北港PM2.5檢測結果 64
圖4-15 第一季轉運站PM2.5檢測結果 66
圖4-16 第二季轉運站PM2.5檢測結果 67
圖4-17 地下道PM2.5檢測結果 68
圖4-18 板橋地下停車場PM2.5檢測結果 69
圖4-19 公車專用道PM2.5檢測結果 71
圖4-20 第一季交通密集道路PM2.5檢測結果 73
圖4-21 採樣期間車流量 74
圖4-22 平日PM2.5濃度與車流量比較圖 75
圖4-23 假日PM2.5濃度與車流量比較圖 75
圖4-24 四縣市同步PM2.5金屬濃度 78
圖4-25 各季物傳遞PM2.5金屬濃度 79
圖4-26 各季工業區PM2.5金屬濃度 81
圖4-27 各季臺北港PM2.5金屬濃度 82
圖4-28 各季轉運站PM2.5金屬濃度 84
圖4-29 隧道/地下道PM2.5金屬濃度 86
圖4-30 板橋地下停車場PM2.5金屬濃度 87
圖4-31 公車專用道PM2.5金屬濃度 89
圖4-32 交通密集道路PM2.5金屬濃度 91
圖4-33 四季大氣PM2.5樣品之化學組成百分比 92
圖4-34 PM2.5以鋁為參考元素之加強因子分析結果 (參考文獻使用文獻土壤金屬測值) 99
圖4-35 PM2.5以鋁為參考元素之加強因子分析結果 (參考元素使用本研究北部土壤金屬測值) 101
Adams, H.S., Nieuwenhuijsen, M.J., Colvile, R.N., McMullen, M.A.S., Khandelwal, P., “Fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK,” Science of the Total Environment, Vol. 279, pp. 29-44 (2005).
Almeida, S.M., Pio, C.A., Freitas, M.C., Reis, M.A., Trancoso, M.A., “Approaching PM2.5 and PM2.5-10 source apportionment by mass balance analysis, principal component analysis and particle size distribution,” Science of the Total Environment, Vol. 368, pp. 663-674 (2006).
Almeida, S.M., Pio, C.A., Freitas, M.C., Reis, M.A., Trancoso, M.A., “Source apportionment of fine and coarse particulate matter in a sub-urban area at the Western European coast,” Atmospheric Environment, Vol. 39, pp. 3127-3138 (2005).
Artinano, B., Salvador, P., Alonso, D.G., Querol, X., Alastuey, A., “Influence of traffic on the PM10 and PM2.5 urban aerosol fractions in Madrid (Spain),” Science of the Total Environment, Vol. 334-335, pp. 111-123 (2004).
Bowen, H.T.M., “Environmental chemistry of elements,” Academic, London New York Toronto. 333 (1979).
Burnett, R.T., Smith-Doiron, M., Stieb, D., Cakmak, S., Brook, J.R., “Effects of aprticulate and gaseous air pollution on cardiorespiratory hospitalizations,” Archives of Environmental and Occupational Health, Vol. 54, pp. 130-139 (1999).
Carmichael, G.R., Zhang, Y., Chen, L.L., Hong, M.S., Ueda, H., “Seasonal variation of aerosol composition at Cheju island, Korea,” Atmospheric Environment,” Vol. 30, pp. 2407-2416 (1996).
Chan, Y.C., Simpson, R.W., Mctainsh, G.H., Vowles, P.D., Cohen, D.D., Bailey, G.M., “Source apportionment of PM2.5 and PM10 aerosols in Brisbane (Australia) by receptor modeling,” Atmospheric Environment, Vol. 33, pp. 3251-3268 (1999).
Chang, S.Y., Lee C.T., Chou Charles C.K., Liu, S.C., Wen, T.X., “The continuous field measurements of soluble aerosol compositions at the Taipei aerosol super site, Taiwan,” Atmospheric Environment, Vol. 41, pp. 1936-1949 (2007).
Cheng, Y., Lee, S.C., Chow, J.C., Watson, J.G., Louie, P.K.K., Cao, J.J., Hai, X., “Chemically-speciated on-road PM2.5 motor vehicle emission factors in Hong Kong,” Science of the Total Environment, Vol. 408, pp. 1621-1627 (2010).
Cheng, Y., Lee, S.C., Ho, K.F., Louie, P.K.K., “On-road particulate matter (PM2.5) and gaseous emissions in the Shing Mun Tunnel, Hong Kong,” Atmospheric Environment, Vol. 40, pp. 4235-4245 (2006).
Chow, J. C., Watson, J.G., Fujita, E.M., Lu, Z.Q., Lawson, D.R., Ashbaugh, L.L., “Temporal and spatial variations of PM2.5 and PM10 aerosol in the Southern, California air-quality study,” Atmospheric Environment, Vol. 28, pp. 2061-2080 (1994) .
Chow, J.C., “Measurement methods to determine compliance with ambient air quality standard for suspended particles,” Journal of the Air and Waste Management Association, Vol. 45, pp. 320-382 (1995).
Donaldson, K., Mills, N., MacNee, W., Robinson, S., Newby, D., “Role of inflammation in cardiopulmonary health.” (2005).
Eldered, R.A., Cahill, T. A., Flochini, R.G., “Composition of PM2.5 and PM10 aerosols in the IMPROVE network,” Journal of the Air & Waste Management Association, Vol. 47, pp. 194-203 (1997).
Fang, C.C., Chang, C.N., Chu, C.C., Wu, Y.S., Fu, P.P.C., Yang, I.L., Chen M.H., “Characterization of particulate, metallic elements of TSP, PM2.5 and PM2.5-10 aerosols at a farm sampling site in Taiwan, Taichung,” The Science of the Total Environment, Vol. 308, pp. 157-166 (2003).
Gillies, J.A., Gertler, A.W., Sagebiel, J.C., Dippel, W.A., “On-road particulate matter (PM2.5 and PM10) emissions in the Sepulveda Tunnel,” Environmental Science, Vol. 35, pp. 1054-1063 (2001).
Giugliano, M., Lonati,, G., Butelli, P., Romele, L., Tardivo, R., Grosso, M., “Fine particulate (PM2.5-PM1) at urban sites with different traffic exposure,” Atmospheric Environment, Vol. 39, pp. 2421-2431 (2005).
Glover, D.M., Hopke, P.K., Vermette, S.J., Landsberger, S., D’Auben, D.R., “Source Apportionment with Site Specific Source Profiles.” Journal of the Air and Waste Management Association, Vol. 41, pp. 294-305 (1991).
Godleski, J.J., Verrier, R.L., Koutrakis, P., Catalano, P., Coull, B., Reinishch, U., Lovett, E.G., Lawrence, J., Murthy, G.G., Wolfson, J.M., Clarke, R.W., Nearing, B.D., Killingsworth C., “Mechanisms of morbidity and mortality from exposure to ambient particles,” Research Report Health Effects Institute. Vol. 91, 5-88 (2000).
Greaves, S., Issarayangyun, T., Liu, Q., “Exploring variability in pedestrian exposure to fine particulates (PM2.5) along a busy road,” Atmospheric Environment, Vol. 42, pp. 1665-1676 (2008).
Greenberg, R.R, Gordon, G.E., Zoller, W.H., Jacko, R.B., “Composition of particles emitted from the nicosia municipal incinerator.” Environmental Sciences, Vol. 12, pp. 1329-1336 (1978).
Grosjean, D., Friedlander, S.K., “Gas-particle distribution factors for organic and other pollutants in the Los Angeles atmosphere,” Journal of the Air Pollution Control Association Vol. 25, pp. 1039-1044 (1975).
Gulliver, J., Briggs, D.J., “Personal exposure to particulate air pollution in transport microenvironments,” Atmospheric Environment, Vol. 38, pp. 1-8 (2004).
Harrison, R.M., Smith, D.J.T., Luhana, L., “Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK,” Environment Science and Technology, Vol. 30, pp. 825-832 (1996).
He, L.Y., Hu, M., Zhang, Y.H., Huang, X.F., Yao, T.T., “Fine particle emissions from on-road vehicles in the Zhujiang tunnel, China,” Environmental Science & Technology, Vol. 42, pp. 4461-4466 (2008).
Henry R.C., Hidy G.M., “Multivariate analysis of particulate sulfate and other air quality variables by principal components-Part I. annual data from Los Angeles and New York,” Atmospheric Environment, Vol. 13, pp. 1581-1596 (1979).
Henry, R.C., Hidy, G.M., “Multivariate analysis of particulate sulfate and other air quality variables by principal components-PartⅡ. Salt Lake City, Utah and St. Louis, Missouri,” Atmospheric Environment, Vol. 16, pp. 929-943 (1982).
Hidy, G.M. Friendlander, S.K., (1971). The nature of the Los Angeles aerosol. In proceedings of the second international clean air congress, Englund, H.M., Berry, W.T., eds. Academic press, New York, 391-404.
Hildemann, L.M., Markowski, G.R., Cass, G.R., “Chemical composition of emissions from urban sources of fine organic aerosol,” Environmental Science and Technology, Vol. 25, pp. 744-759 (1991).
Hinds, W.C., “Properties, behavior and measure of airborne particles, 2nd edition,” Aerosol Technology, New York, USA. pp. 3-4 (1997).
Ho, K.F., Lee, S.C., Cao, J.J., Chow, J.C., Watson, J.G., Chan, C.K., “Seasonal variations and mass closure analysis of particulate matter in Hong Kong,” Science of the Total Environment, Vol. 355, pp. 276-287 (2006).
Hoek G., Brunekreef B., Fischer P., van Wijnen J., “The association between air pollution and heart failure, arrhythmia, embolism, thrombosis, and other cardiovascular causes of death in a time series study,” Epidemiology, Vol. 12, pp. 355-357 (2001).
Hooper, G.H.S., “Effects of larval rearing temperature on the development of the Mediterranean fruit fly Ceratitis capitata,” Entomologia Experimentalis et Applicata, Vol. 23, pp. 222-226 (1978).
Hueglin, C., Gehrig, R., Baltensperger, U., Gysel, M., Monn, C., Vonmont, H., “Chemical characterisation of PM2.5, PM10 and coarse particles at urban, nearcity and rural sites in Switzerland,” Atmospheric Environment, Vol. 39, pp. 637-651 (2005).
James, P.S., Raveendra, V.I., Timothy, E., “Multivariate statistical examination of spatial and temporal patterns of heavy metal contamination in New Bedford Harbor Marine Sediments,” Environmental Science, Vol. 29, pp. 1781-1788 (1995).
Jamriska, M., Morawska, L., Thomas, S., and He, C. R., “Diesel bus emissions measured in a tunnel study,” Environmental Science and Technology, Vol. 38, pp. 6701-6709 (2004).
Kaiser, H.F., “A second-generation Little Jiffy” Psychometrika, Vol. 35, 401-415 (1970).
Kemp, A.L.W., Thomas, R.L., Dell, C.I., Jaquet, J.M., “Cultural impact on the geochemistry of sediments in lake Erie,” Journal of the Fisheries Research Board of Canada. Vol. 33, pp. 440-462 (1976).
Khan, Md. F., Shirasuna, Y., Hirano, K., Masunaga, S., “Characterization of PM2.5, PM2.5-10 and PM10 in ambient air, Yokohama, Japan,” Atmospheric Research, Vol. 96, pp. 159-172 (2010).
Khodeir , M., Shamy , M., Alghamdi , M., Zhong , M., Sun , H., Costa , M., Chen , L.C., Maciejczyk P., “Source apportionment and elemental composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia,” Atmospheric Pollution Research, Vol. 3, pp. 331-340 (2012).
Kim, Y.P., Lee, J.H., Baik, N.J., Kim, J.Y., Shim, S.G., Kang, C.H., “Summertime characteristics of aerosol composition at Cheju island, Korea,” Atmospheric Environment, Vol. 32, pp. 3905-3915 (1998).
Kneip, T.J., Kleinman, M.T., Eisenbud, M., “Relative contribution of emission sources to the total airborne particulates in New York city,” In 3rd IUAPPA Clean Air Congress (1972).
Kowalczyk, G.S., Choquette, C.E., Gordon, G.E., “Chemical element balance and identification of air pollution sources in ashington D.C.,” Atmospheric Environment, Vol. 12, pp. 1143-1153 (1978).
Lai, S.C., Zou, S.C., Cao, J.J., Lee, S.C., Ho, K.F., “Characterizing ionic species in PM2.5 and PM10 in four pearl river delta cities, south China,” Journal of Environmental Sciences, Vol. 19, pp. 939-947 (2007).
Lee, S., Liu, W., Wang, Y., Russell, A.G., Edgerton, E.S., “Source apportionment of PM2.5: Comparing PMF and CMB results for four ambient monitoring sites in the southeastern United States,” Atmospheric Environment, Vol. 42, pp. 4126-4137 (2008).
Liao, D., Creason, J., Shy, C., Williams, R., Watts, R., Zweidinger, R., “Daily variation of particulate air pollution and poor cardiac autonomic control in the elderly,” Environmental Health Perspectives, Vol. 107, pp. 521-525 (1999).
Lough, G.C., Schauer, J.J., Park, J.S., Shafer, M.M., Deminter, J.T., Weinstein, J.P., “Emissions of metals associated with motor vehicle roadways,” Environmental Science and Technology, Vol. 39, pp. 826-836 (2005).
Lung, S.C., Liu, C.H., Huang S.Y., Lin T.J., Chou, C.K., Liu, S.C., “Water-soluble ions of aerosols in Taipei in spring 2002,” Taiwan Academic Online, Vol. 15, pp. 901-923 (2004).
Mamane, Y., “Estimate of municipal refuse incinerator contribution to Philadephia aerosol using single particle analysis - II, ambient measurement,” Atmospheric Environment, Vol. 24, pp. 127-135 (1990).
Mantecca, P., Gualtieri, M., Longhinm, E., Bestetti, G., Palestini, P., Bolzacchini, E., Camatini, M., “Adverse biological effects of Milan urban pm looking for suitable molecular markers of exposure,” Chemical Industry & Chemical Engineering Quarterly, Vol. 18 pp. 635-641 (2012).
Marcazzan, G.M., Geriani, M., Valli, G., Vecchi, R., ”Source apportionment of PM10 and PM2.5 in Milan (Italy) using receptor modeling,” The Science of the Total Environment, Vol. 317, pp. 137-147 (2003).
Marcazzan, G.M., Vaccaro, S., Valli, G., Vecchi, R., “Characterisation of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy),” Atmospheric Environment, Vol. 35 pp. 4639-4650 (2001).
McCreanor, J., Stewart-Evans, J., Malliarou, E., Han, I., Zhang, J., Svartengren, M., “Health effects of diesel exhaust in asthmatic atients: a real-world study in London. Paper presented at the Ninth Annual UK review meeting on outdoor and indoor air pollution research,” Institute for Environment and Health, Leicester, UK. (2005).
Murillo, J.H., Ramos, A.C., Garcia, F.A., Jimenez, S.B., Cardenas, B., Mizohata, A., “chemical composition of pm2.5 particles in Salamanca, Guanajuato Mexico: source apportionment with receptor models,” Atmospheric Research, Vol. 107, pp. 31-41 (2012).
Nicole, A.H.J., Dimphe, F.M., Katinka, V.D.J., Hendrik, H., Gerard, H., “Mass concentration and elemental composition of airborne particulate matter at street and background locations,” Atmospheric Environment, Vol. 31, pp. 1185-1193 (1997).
Nriagu, J.O., “A global assessment of natural source of atmospheric trace metals,” National Water Research Institute, Vol. 338, pp. 47-49 (1989).
Nriagu, J.O., Pacyna, J.M., “Quantitative assessment of worldwide contamination of air, water and solid by trace metals.” National Water Research Institute, Vol. 333, pp. 134-139 (1988).
Oliveira, C., Pio, C., Caseiro, A., Santos, P., Nunes, T., Mao, H., Luahana, L., Sokhi, R., “Road traffic impact on urban atmospheric aerosol loading at Oporto, Portugal,” Atmospheric Environment. Vol. 44, pp. 3147-3158 (2010).
Pacyna, J.M., “Atmospheric trace elements from natural and anthropogenic sources, in Nriagu, in Nriagu, J.O., Davidson, C.I. (Eds.):Toxic metals in the atmosphere,” Wiley, New York (1986).
Peters, A., Vonklot, S., Heier, M., Trentinaglia, I., Hormann, A., Wichmann, H.E., Lowel, H., “Exposure to traffic and the onset of myocardial infarction,” New England Journal of Medicine, Vol. 351, pp. 1721-1730 (2004).
Pope III, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurstion, G.D., “Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution,” Journal of the American Medical Association, Vol. 287, pp. 1132-1141 (2002).
Pope III, C.A., Burnett, R.T., Thurston, G.D., thun, M.J., Calle, E.E., krewski, D., Godleski, J.J., “Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease,” Circulation. Vol. 109, pp. 71-77 (2004).
Putauda, J.P., Raes, F., Dingenen, R.V., Br.uggemann, E., Facchini, M.C., Decesari, S., Fuzzi, S., Gehrig, R., Huglin, C., Laj, P., Lorbeer, G., Maenhaut, W., Mihalopoulos, N., Muller, K., Querol, X., Rodriguez, S., Schneider, J., Spindler, G., Brink, H.T., Trseth, K., Wiedensohler, A., “A European aerosol phenomenology-2:chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe,” Atmospheric Environment, Vol. 38, pp. 2579-2595 (2004).
Querol, X., Alastuey, A., “Levels and chemistry of atmospheric particulates induced by a spill of heavy metal mining wastes in the Donana area, southwest Spain,” Atmospheric Environment, Vol. 34, pp. 239-253 (2000).
Raad R.Y., Davies, T.D., Jickells, T.D., Miller J.M., “Trace elements in daily collected aerosols at a site in southeast England,” Atmospheric Environment, Vol. 25, pp. 985-996 (1991).
Ragosta, M., Caggiano, R., Macchiato, M., Sabia, S., Trippetta, S., “Trace elements in daily collected aerosol: Level characterization and source identification in a four-year study,” Atmospheric Research, Vol. 89, pp. 206-217 (2008).
Rees, S.L., Robinson, A.L., Khlystov, A., Stanier, C.O., Pandisb, S.N., ”Mass balance closure and the Federal Reference Method for PM2.5 in Pittsburgh, Pennsylvania,” Atmospheric Environment, Vol. 38, pp. 3305-3318 (2004).
Rees, S.L., Robinson, A.L., Khlystovd, A., Stanierd, C.O., Pandisb, S.N., “Mass balance closure and the federal reference method for PM2.5 in Pittsburgh, Pennsylvania,” Atmospheric Environment, Vol. 38, pp. 3305-3318 (2004).
Riediker, M., Cascio, W.E., Griggs, T.R., Herbst, M.C., Bromberg, P.A., Neas, L., Williams, R.W., Devlin, R.B., “Particulate matter exposure in cars is associated with cardiovascular effects in healthy young men,” American Journal of Respiratory and Critical Care Medicine, Vol. 169, pp. 934-940 (2004).
Rodriguez, S., Querol, X., Alastuey, A., Viana, M.M., Alarcon, M., Mantilla, E., Ruiz, C.R., “Comparative PM10-PM2.5 source contribution study at rural, urban and industrial sites during PM episodes in Eastern Spain,” Science of the Total Environment, Vol. 328, pp. 95-113 (2004).
Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cas, G.R., “Sources of fine organic aerosol, 3, road dust, tire debris, and organometallic brake lining dust: roads as sources and sinks,” Environmental Science & Technology, Vol. 27, pp. 1892-1904 (1993).
Saarikoski, S., “Chemical mass closure and source-specific composition of atmospheric particles,” Finnish Meteorological Institute Contributions, Vol. 74 (2008).
Scheff, P.A., Valiozis, C., “Characterization and source identification of respirable particulate matter in Athens, Greece,” Atmospheric Environment, Vol. 24, pp. 203-211 (1990).
Seaton, A., Macnee, W., Donaldson, W., Godden, D., “Particulate air pollution and acute health effects,” The Lancet, Vol. 345, pp. 176-178 (1995).
Shwartz, J., Dockery, D.W., Neas, L.M., “Is daily mortlity associated specifically with fine particles,” Air and Waste Management Association, Vol. 46, pp. 927-939 (1996).
Sillanpaa, M., Hillamo, R., Saarikoski, S., Frey, A., Pennanen, A., Makkonen, U., Spolnik, Z., Grieken, R.V., Braniš, M., Brunekreef, B., Chalbot, M.C., Kuhlbusch, T., Sunyer, J., Kerminen, V.M., Kulmala, M. and Salonen, R.O., “Chemical composition and mass closure of particulate matter at six urban sites in Europe,” Atmospheric Environment, Vol. 40, pp. 212-223 (2006).
Sternbeck, J., Sjodin, A., Andreasson, K., “Metal emissions from road traffic and the influence of resuspension - results from two tunnel studies,” Atmospheric Environment, Vol. 36, pp. 4735-4744 (2002).
Swietlicki, E., Krejci, R., “Source characterisation of the central European atmospheric aerosol using multivariate statistical methods,” Nuclear Instruments and Methods in Physics Res, p.p. 519-525 (1996).
Swietlicki, E., Krejci, R., “Source characterisation of the central European atmospheric aerosol using multivariate statistical methods,” Nuclear Instruments and Methods in Physics Research, pp. 519-525 (1996).
Tao, J., Zhang, L., Engling, G., Zhang, R., Yang, Y., Cao, J., Zhu, C., Wang, Q., Luo, L., “Chemical composition of PM2.5 in an urban environment in Chengdu, China: Importance of springtime dust storms and biomass burning,” Atmospheric Research, Vol. 122, pp. 270-283 (2013).
Thurston, G.D., Spengler, J.D., “A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston,” Atmospheric Environment, Vol. 19, pp. 9-25 (1985).
USEPA Receptor Model Technical Series, Vol. II, Chemical Mass Balance, Report No. EPA-450/4-81-016b, U.S. EPA Research Triangle Park Nc (1981).
Van Malderen, H., Rojas, C., Rrieken, R., “Characterization of individual giant aerosol particle above the North Sea,” Environmental Science & Technology, Vol. 26, pp. 750-756.
Vanloon, J.C., “Selected methods of trace metal analysis: biological and environmental samples,” John Wiely and Sons, Inc., (1985).
Var, F., Narita, Y., Tanaka, S., “The concentration, trend and seasonalvariation of metals in the atmosphere in 16 Japanese cities shown by theresults of National Air Surveillance Network (NASN) from 1974 to 1996,” Atmospheric Environment, Vol. 34, pp. 2755-2770 (2000).
Viana, M., Amato, F., Alastuey, A., Querol, X., Moreno, T., Garcia, S., Herce, M.D., Fernandez-Patier, R., “Chemical tracers of particulate emissions from commercial shipping,” Environmental Science and Technology, Vol. 43, pp. 7472-7477 (2009).
Wang, Y., Zhuang, G., Tang, A., Yuan, H., Sun, Y., Chen, S., Zheng, A., “The ion chemistry and the source of PM2.5 aerosol in Beijing,” Journal of Hazardous Materialst, Vol. 39, pp. 3771-3784 (2005).
Wang, Y.F., Huang, K.L., Li, C.T., Mi, H.H., Luo, J.H., Tsai, P.J., “Emissions of fuel metal content from a diesel vehicles engine,” Atmospheric Environment, Vol. 37, pp. 4637-4643 (2003).
Watson, J.G., “Chemical element balance receptor model methodology for assessing the sources of fine and total suspended particulate matter in Portland, Oregon,” Ph.D. Dissertation, Oregon graduate center, Beaverton, OR, Beaverton, OR. (1979).
Watson, J.G., Chemical element balance receptor model methodology for assessing sources of fine and total suspended particulate matter in Portland, Oregon. Ph.D. Thesis, Oregon Graduate Center, Beaverton, OR (1979) .
Watson, J.G., Chow, J.C., Chen, L.W.A., Green, M.C., Kohl, S.D., “Wintertime PM2.5 source contributions in Reno, NV,” Desert Research Institute Nevada System of Higher Education (2012).
Wei, F., Teng, E., Wu, G., Hu, W., Wilson, W.E., Chapman, R.S., Pau, J.C., Zhang, J., “Ambient concentration and elemental compositions of pm10 and pm2.5 in four Chinese cities,” Environmental Science & Technology, Vol. 33, pp. 4188-4193 (1999).
Weingartner, E., Keller, C., Stahel, W. A., Burtscher, H., Baltensperger, U., “Aerosol emission in a road tunnel,” Atmospheric Environment, Vol. 31, pp.451-462 (1997).
Wicken, A.J., Buck, S.F., “Report on study of environmental factors associated with lung cancer and bronchitis mortality in areas of North East England,” Tobacco Research Council, (1964).
Winchester, J.W., Nifong, G.D., “Water pollution in Lake Michigan by trace elements from aerosol fallout,” Water Air and Soil Pollution, Vol. 1, pp. 50-64 (1971).
Wolff, G.T., Korsog, P.E., Kelly, N.A., Fermam, M.A., “Relationships Between Fine Particulate Species, Gaseous and Meteorological Parameters in Detroit 19,” Atmospheric Environment, Vol. 19, pp. 1341-1349 (1985).
Wu, Y., Hao, J., Fu, L., Hu, J., Wang, Z., Tang, U., “Chemical characteristics of airborne particulate matter near major roads and at background locations in Macao, China,” Science of the Total Environment, Vol. 317, pp. 159-172 (2003).
Yang, K. L., “Spatial and seasonal variation of PM10 mass concentrations in Taiwan,” Atmospheric Environment, Vol. 36, pp. 3403-3411 (2002).
Yuan, C.S., Sau, C.C., Chen, M.C., Hung, M.H., Chang, S.W., Lin, Y.C., Lee, C.G., “Mass concentration and size-resolved chemical composition of atmospheric aerosols sampled at the Pescadores Islands during Asian dust storm periods in the years of 2001 and 2002,” TAO, Vol. 15, pp. 857-879 (2004).
Zanobetti, A., Canner, M.J., Stone, P.H., Schwartz, J., sher, D., Eagan-Bengstion, E., Gates, K.A., Hartley, L.H., Such, H., Gold, D.R., “Ambient pollution and blood pressure in cardiac rehabilitation patients,” Circulation, Vol. 110, pp. 2184-2189 (2004).
Zheng, M., Salmon, L.G., Schauer, J.J., Zeng, L., Kiang, C.S., Zhang, Y., Cass, G.R., “Sersonal trends in PM2.5 source contributions in Beijing, China,” Atmospheric Environment, Vol. 39, pp. 3967-3976 (2005).
吳啟文,「台灣中部都會區氣懸浮微粒粒徑分佈之污染物特性分析」,碩士論文,國立中央大學環境工程研究所,桃園 (1996)。
吳義林、許立勳,「台南縣大氣懸浮微粒組成與來源」,第十五屆空氣污染控制技術研討會,763-767,(1998)。
林志忠,「交通源大氣奈米、超細、細及粗微粒組成特性之研究」,博士論文,國立屏東科技大學環境工程與科學系,屏東 (2007)。
俞宗岳,「大氣中懸浮微粒二次氣膠含量與生成速率之推估」,碩士論文,國立成功大學環境工程學系,台南 (2003)。
候伶佳,「運用受體模式與軌跡模式探討懸浮微粒之貢獻與傳輸」,碩士論文,逢甲大學環境工程與科學系,台中 (2007)。
陳昌煚,「交通空氣品質監測站污染特性探討及改善策略研擬-以苗栗公館測站為例」,碩士論文,國立中山大學環境工程研究所,高雄 (2005)。
陳康興、林鉅富,「高雄地區大氣中懸浮微粒PM2.5特性及來源之探討」,1999 氣膠科技國際研討會,76-84,(1999)。
陳順宇,「多變量分析」,華泰文化出版,台北 (2000)。
黃元勳,「屏東郊區大氣懸浮微粒化學組成特性探討」,碩士論文,國立屏東科技大學環境工程與科學系,屏東 (2006)。
楊奇儒,「積塵再捲揚作用對地面附近大氣粒狀物濃度之影響」,碩士論文,國立成功大學環境工程學系,台南 (1994)。
詹俊南,「台灣地區PM10 污染特性分析」,碩士論文,國立台灣大學環境工程研究所,台北 (1995)。
蔡仁雄,「屏東郊區懸浮微粒特性之研究」,碩士論文,國立屏東科技大學環境工程與科學系,屏東 (2006)。
蔡春進,「101年度環境中奈米物質量測及特性分析技術開發」,行政院環境保護署環境檢驗所,(2012)。
鄭曼婷、李建翰、賴立蓁、黃柏翔,「應用CMB受體模式解析中灣西部地區大氣懸浮微粒的污染源貢獻量」,中華民國環境工程學會,2009空氣污染控制技術研討會,雲林 (2009)。
盧彥勳,「大氣中微粒污染與重金屬成份之模擬與分析」,碩士論文,東海大學,台中 (2009)。
賴沛君,「應用CMB受體模式分析懸浮微粒高污染事件之研究」,碩士論文,國立中興大學環境工程學系,台中 (2004)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊