[1]林育利,使用類神經網路結合支撐向量機之分類器研究,碩士論文,國立中央大學光機電工程研究所,2008。[2]J. Ozols and A. Borisov, “Fuzzy classification based on pattern projections analysis,” Pattern Recognition, vol.34, no 4, pp. 763-781, Apr. 2001.
[3]C.-L. Huang and C.-J. Wang, “A GA-based feature selection and parameters optimization for support vector machines,” Expert Systems with Applications, vol. 31, no. 2, pp. 231-240, Aug. 2006.
[4]V. N. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.
[5]Y.-J. Lee and O. L. Mangasarian, “SSVM: A Smooth Support Vector Machine for Classification,” Computational Optimization and Applications, vol.20, no. 1, pp. 5-22, 2001.
[6]G. Li, C. Wen, G.-B. Huang and Y. Chen, “Error tolerance based support vector machine for regression,” Neurocomputing, vol. 74, no. 5, pp. 771-782, Feb. 2011.
[7]M. Karasuyama, and I. Takeuchi, “Multiple Incremental Decremental Learning of Support Vector Machines,” IEEE Trans. on Neural Networks, vol. 21, no. 7, pp. 1048-1059, Jul. 2010.
[8]G. Cauwenberghs, T. Poggio, “Incremental and decremental support vector machine learning,” Advances in Neural Information Processing Systems, pp. 409-415, 2000.
[9]J. Kivnen, A. Smola and R. Williamson, “Online learning with kernels,” IEEE Trans. on Signal Processing, vol. 52, no. 8, pp. 2165-2176, 2004.
[10]T. Gal, Postoptimal Analysis, Parametric Programming, and Related Topics, Berlin, New York: Walter de Gruyter, 1995.
[11]T. Hastie, S. Rosset, R. Tibshirani and J. Zhu, “The entire regularization path for the support vector machine,” J. Mach. Learning Res., vol. 5, pp. 1391-1415, 2004.
[12]F. Orabona, C. Castellini, B. Caputo, L. Jie and G. Sandini, “On-line independent support vector machines,” Pattern Recognition, vol. 42, pp. 1402-1412, Apr. 2010.
[13]J.A.K. Suykens and J. Vandewalle, “Least squares support vector machine classifiers,” Neural Processing Letters, vol. 9, no. 3, pp. 293-300, 1999.
[14]J. A. K. Suykens, J. D. Brabanter, L. Lukas and J. Vandewalle, “Weight least squares support vector machines: robustness and sparse approximation,” Neurocomputing, vol. 48, no. 1-4, pp. 85-105, Oct. 2002.
[15]H. W. Kuhn and A. W. Tucker, Nonlinear programming, Proceedings of 2nd Berkeley Symposium, Berkeley: University of California Press. pp. 481–492, 1951.
[16]W. Karush, “Minima of Functions of Several Variables with Inequalities as Side Constraints,” M.Sc. Dissertation, Dept. of Mathematics, Univ. of Chicago, Chicago, Illinois, 1939.
[17]C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 121-167, 1998.
[18]V. Vapnik, The nature of statistical learning theory, Springer-Verlag, New-York, 1995.
[19]N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines: Cambridge Univ. Press, 2000.
[20]A. Navia-Vazquez, R. Diaz-Morales, “Fast error estimation for efficient support vector machine growing,” Neurocomputing, vol. 73, no. 4-6, pp. 1018-1023, Jan. 2010.
[21]A. Navia-Vazquez, F. Perez-Cruz, A. Artes-Rodriguez, AR. Figueiras-Vidal, “Weighted least squares training of support vector classifiers leading to compact and adaptive schemes,” IEEE Trans Neural Netw, vol. 12, no. 5, pp.1047-1059, Sep. 2001.
[22]A. Navia-Vazquez, “Compact multi-class support vector machine,” Neurocomputing, vol. 71, no. 1-3, pp.400-405, Dec. 2007.
[23]A. Navia-Vazquez, E. Parrado-Hernandez, I. Mora-Jimenez, J. Arenas-Garca, A. R. Figueiras-Vidal, “Growing support vector classifiers with controlled complexity,” Pattern Recognition, vol. 36, no. 7, pp. 1479-1488, July 2003.
[24]Y. Engel, S. Mannor, R. Meir, “The kernel recursive least-squares algorithm,” IEEE Transactions on Signal Processing, vol. 52, no. 8, pp. 2275-2285, Aug. 2004.
[25]G. Cauwenberghs and T. Poggio, “Incremental and decremental support vector machine learning,” Advances in Neural Information Processing Systems, pp. 409–415, 2000.
[26]C.-C. Chang and, C.-J. Lin, LIBSVM: a library for support vector machines, software available at: 〈http://www.csie.ntu.edu.tw/~cjlin /libsvm/〉, 2001.
[27]G. Ratsch, Benchmark repository, Technical Report, Intelligent Data Analysis Group, Fraunhofer-FIRST, available at:〈http://ida.first. fraunhofer.de/raetsch〉, 2005.
[28]H. Duana, X. Shaob, W. Houa, G. Hea, Q. Zenga, “An incremental learning algorithm for Lagrangian support vector machines”, Pattern Recognition Letters, vol. 30, no. 15, pp. 1384–1391, Nov. 2009
[29]G. Cauwenberghs, T. Poggio, “Incremental and decremental support vector machine learning”, Adv. Neural Information Processing, vol. 13, 2001.