跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/25 22:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳羽騏
研究生(外文):Yu-Chi Chen
論文名稱:幾種Tospovirus屬病毒間NSs蛋白的血清學關係比較
論文名稱(外文):Comparison of the serological relationships among the NSs proteins of different tospoviruses
指導教授:張清安張清安引用關係
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:應用化學系生化科技碩士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:125
中文關鍵詞:血清學非結構性蛋白番茄斑點萎凋病毒屬
外文關鍵詞:serologicalNon-structural proteinTospovirus
相關次數:
  • 被引用被引用:1
  • 點閱點閱:545
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
Tospoviruses 乃一群可以經由薊馬傳播之植物病毒,受害之作物病徵通常極為明顯,對生長與品質造成嚴重影響。根據文獻報導目前有三種可能危害蘭花之 tospoviruses 存在;包括台灣已經發生之番椒黃化病毒(Capsicum chlorosis virus, CaCV)、蕃茄斑萎病毒(Tomato spotted wilt virus, TSWV)及尚未但可能入侵台灣之鳳仙花壞疽斑點病毒(Impetiens necrotic spot virus, INSV)。此三種病毒的檢測與鑑別技術便攸關此類病毒病害之發生與傳播是否能被精準的掌握與控制。傳統 tospoviruses 的鑑定是以其 S RNA 互補股所對應之核鞘蛋白(nucleocapsid protein,NP)為檢測之標的與分類之依據。本研究基於相關文獻指出 tospovirus S RNA 之正意股所對應之非結構性蛋白(Non-structural protein, NSs)會累積在感病細胞內形成內含體(inclusion),故擬嘗試探討以 NSs 蛋白作為此等病毒檢測或鑑定標的之可行性。同時針對此等病毒間其 NSs 蛋白之血清類緣關係進行比對,供檢測應用之參考。研究策略乃將感染本省蝴蝶蘭最普遍之 CaCV 及發生於荷蘭蝴蝶蘭上之 INSV 及 TSWV 所對應之 NSs 蛋白以細菌表達外源蛋白之技術,將其大量誘導純化並製備成多元抗體,進行血清學研究。另外將另一種普遍發生於台灣瓜類作物且與 CaCV 同屬 NP 蛋白第四血清型之西瓜銀斑病毒(Watermelon silver mottle virus, WSMoV)之 NSs 蛋白加以純化供血清類緣關係比較。根據上述四種 tospoviruses 之已知 S RNA 基因體序列,設計可分別增幅各病毒 NSs 基因之四組專一性引子對,將四種病毒之 NSs 基因加以增幅,並分別選殖於 pGEM-T Easy(Promega﹐USA)或pCRII-TOPO (Quiagen, USA)載體上,經分別解序並分析後證實利用NSs 基因序列分析所獲得之 tospovirus 親緣關係與演化趨勢結論與文獻上針對 NP 基因所做之相同分析結論幾近相符。分析發現同種病毒之 NSs 基因在核苷酸及胺基酸序列相同度(identity)均落於 94
Tospoviruses is a group of plant viruses characterized in their distinct thrips-borne transmissibility. There have been more than 30 different tospoviruses reported globally and most of them induce very severe symptoms on their host plant that result evident loss in yield and quality. Among the three tospoviruses known to infect Phalaenopsis, Capsicum chlorosis virus (CaCV) was currently endemic in Taiwan. The other two including Tomato spotted wilt virus (TSWV) and Impatiens necrotic spot virus (INSV) have not yet been found in Taiwan to infect Phalaenopsis. Therefore the latter two tospoviruses are considered as quarantine pathogens for Taiwan’s Phalaenopsis industry. Therefore, the accuracy of the techniques applied to the detection and diagnosis is a major concern on the surveillance and control of the these virus diseases of orchids. Traditionally, the nuclear capsid protein (NP) was used as the major target of detection and taxonomic criteria for tospoviruses. While recently there was literature suggesting the non-structure protein (NSs) encoded in the S-RNA of tospoviruses could be used an alternative target. This study was therefore aiming at clarification of the feasibility of using NSs as a target for quick differentiation of those Phalaenopsis-infecting tospoviruses. In addition, serological relationship of NSs proteins among tospoviruses was also studied due to its importance in application of NSs for virus detection. Our study took the approach of using bacteria expressed protein system to obtain purified NSs protein encoded by the three Phalaenopsis infecting tospoviruses for their antibody production. We also included Watermelon silver mottle virus (WSMoV), the type species of the 4th NP serogroup in tospoviruses, to study the serological variation among NSs proteins of tospoviruses. The study started by the design of primer pairs specific respectively to these tospoviruses to amplify their NSs genes, which were then cloned in pGEM-T Easy (Promega, USA) or pCRII-TOPO (Quiagen, USA) plasmids and sequenced. Analyses of these NSs gene sequences found that those viruses in the same NP serogroup were also closely related among their NSs proteins. The nucleotide and amino acid sequence identities within the same NP serogroup were 70-79
目錄
書名頁
碩士論文授權書
論文口試委員會審定書(中文版)
論文口試委員會審定書(英文版)
中文摘要 -------------------------------------------- Ⅰ
英文摘要 -------------------------------------------- Ⅴ
致謝 ------------------------------------------------ IX
目錄 ------------------------------------------------ XI
表目錄 --------------------------------------------- XVI
圖目錄 -------------------------------------------- XVII
壹、 前言 --------------------------------------------- 1
貳、 前人研究 ----------------------------------------- 5
一、蘭花之簡介 ------------------------------------ 5
二、台灣蘭花產業之發展現況 ------------------------ 5
三、蘭花病毒病害之發生與對產業的影響 -------------- 7
四、可能影響蘭花之番茄斑委病毒屬病毒之特性 -------- 8
(一)tospoviruses 之特性 ------------------------ 9
(二)番椒黃化病毒
( Capsicum chlorosis virus﹐CaCV )-------- 17
(三)番茄斑點萎凋病毒
( Tomato spotted wilt virus﹐TSWV )-------- 18
(四)鳳仙花壞疽斑點病毒
( Impatiens necrotic spot virus, INSV ) ------ 20
(五)西瓜銀斑紋病毒
( Watermelon silver mottle virus, WSMoV ) --- 20
參、材料與方法 --------------------------------------- 22
一、病毒來源 ------------------------------------- 22
二、四種病毒 NSs 基因之增幅、選殖與序列分析 ------ 22
(一)設計四種病毒 NSs 基因引子對 ------------ 22
(二)反轉錄聚合酶鏈鎖反應(RT-PCR) ---------- 22
(三)電泳分析 -------------------------------- 23
(四)PCR 產物之純化 ------------------------- 23
(五)PCR 增幅片段之選殖 --------------------- 24
(六)選殖株之篩選 ---------------------------- 25
(七)質體之純化 ------------------------------ 26
(八)酵素剪切 -------------------------------- 26
(九)定序 ------------------------------------ 27
三、四種 tospoviruses NSs 基因表現載體構築---------- 27
(一)限制酶處理(restriction enzyme treatment)----- 27
(二)接合反應(ligation)------------------------ 27
(三)四種 tospoviruses NSs 基因表現載體之構築
與轉型 --------------------------------- 28
四、NSs基因選殖 --------------------------------- 30
(一)四種 tospoviruses NSs蛋白之選殖策略 ------- 30
(二)構築四種 tospoviruses NSs 基因之表現載體
之引子對設計 --------------------------- 30
五、細菌表現蛋白之誘導與純化 --------------------- 32
(一)表現蛋白之誘導 -------------------------- 32
(二)西方轉漬(Western blotting)分析 ------------ 33
(三)大量表現蛋白之純化 ---------------------- 34
(四)表現蛋白質之回收與純化 ------------------ 34
六、免疫抗血清製備 ------------------------------- 35
(一)免疫抗血清製備 -------------------------- 35
(二)SDS免疫擴散反應測試 -------------------- 35
(三)免疫球蛋白(immunoglobin, IgG)製備 ------- 36
七、酵素結合免疫吸附法(ELISA)-------------------- 36
肆、結果 ---------------------------------------------- 38
一、四種 tospoviruses NSs 基因之增幅與選殖 --------- 38
二、四種 tospoviruses NSs 基因之定序與親緣分析 ----- 38
三、利用細菌表現載體表達四種 tospoviruses 之 NSs基因
--------------------------------------------- 39
(一) 四種 tospoviruses NSs 表現載體之構築
--------------------------------------- 40
(二) 表現載體之轉型與篩選
--------------------------------------- 40
(三) 表現蛋白之誘導及電泳分析 --------------------------------------- 41
(四) 四種 tospoviruses NSs 不同構築組合之大量表現
與純化 -------------------------------- 42
(五) NSs 蛋白抗體之血清學特性比較 --------------------------------------- 43
1. SDS-免疫擴散法(SDS-immunodiffusuin test)
-------------------------------------- 43
2.西方轉漬(Western blotting)試驗 ---------- 43
3.ELISA反應試驗 ------------------------ 44
(六)應用 NSs 蛋白抗血清於 CaCV 病毒檢測之探討
--------------------------------------- 45
1. 不同稀釋倍數下之蝴蝶蘭病汁液與 CaCV NSs
血清在 ELISA 下之反應 ---------------- 45
2.應用 ELISA 檢測蝴蝶蘭病 -------------- 45
3.蝴蝶蘭黃化輪斑病徵之不同位置與 CaCV NSs
蛋白累積之關係 ----------------------- 46
伍、討論 ---------------------------------------------- 47
陸、參考文獻 ------------------------------------------ 54
表---------------------------------------------------- 70
圖---------------------------------------------------- 75








表目錄
表一、增幅四種 tospovirus NSs 基因所使用之引子對名稱、
序列、增幅片段之預期長度及黏合反應溫度 ---------- 70
表二、構築六種不同重組表現蛋白所使用之引子對名稱、
序列、增幅片段之預期長度及黏合反應溫度 ---------- 71
表三、篩選具嵌入序列之 pGEM-T Easy 及 pCR 2.1-TOPO
載體之成功轉型菌株所使用之引子對 --------------- 72
表四、四種 tospoviruses NSs 基因與 GenBank 上其他
Tospovirus 屬病毒 NSs 基因全長序列之核苷酸序
列相同度比對 ----------------------------------- 73
表五、四種 tospoviruses NSs 基因與 GenBank 上其他
Tospovirus 屬病毒 NSs 基因全長序列之胺基酸序
列相同度比對 ----------------------------------- 74







圖目錄
圖一、成功選型 pGEN- T Easy 載體之 CaCV NSs 基因菌株
篩選-------------------------------------------- 75
圖二、成功選型 pCR 2.1-TOPO 載體之 TSWV NSs 基因菌株
篩選 ------------------------------------------- 76
圖三、成功選型 pCR 2.1-TOPO 載體之 INSVV NSs 基因菌株
篩選 ------------------------------------------- 77
圖四、成功選型 pCR 2.1-TOPO 載體之 WSMoV NSs 基因菌
株篩選 ----------------------------------------- 78
圖五、Tospovirus NSs-核苷酸序列與 GenBank 上已登錄之演化
親源樹狀圖 ------------------------------------- 79
圖六、Tospovirus NSs-胺基酸序列與 GenBank 上已登錄之演化
親源樹狀圖 ------------------------------------- 80
圖七、CaCV 全長 NSs 基因序列構築於表現載體 pET-28b(+)
上之上下游相關位置與序列 ----------------------- 81
圖八、CaCV NSs 基因之 N 端序列構築於表現載體 pET-28b(+)
上之上下游相關位置與序列 ----------------------- 82
圖九、CaCV NSs N 端部分序列構築於表現載體 pET-28b(+) 上
之上下游相關位置與序列,此轉譯架構含蘭花 CymMV 鞘
蛋白之 N 端 177 bp 及 CaCV NSs 之 N 端 519 bp --- 83
圖十、TSWV 全長 NSs 基因序列 構築於表現載體 pET-28b(+)
上之上下游相關位置與序列 ----------------------- 85
圖十一、INSV 全長 NSs 基因序列構築於表現載體 pET-28b(+)
上之上下游相關位置與序列 --------------------- 86
圖十二、WSMoV 全長 NSs 基因序列構築於表現載體 pET-28b(+)上之上下游相關位置與序列 ----------------- 87
圖十三、成功轉型表現載體 CaCV NSFL/pET-28b(+)
之菌株篩選 ----------------------------------- 88
圖十四、成功轉型表現載體 CaCNSN/pET-28b(+)
之菌株篩選------------------------------------ 89
圖十五、成功轉型表現載體 CyCaNSN/pET-28b(+)
之菌株篩選 ----------------------------------- 90
圖十六、成功轉型表現載體 TSWV NSFL/pET-28b(+)
之菌株篩選 ----------------------------------- 91
圖十七、成功轉型表現載體 INSV NSFL/pET-28b(+)
之菌株篩選 ----------------------------------- 92
圖十八、成功轉型表現載體 WSMoV NSFL/pET-28b(+)
之菌株篩選 ----------------------------------- 93
圖十九、利用電泳(SDS-PAGE)及西方轉漬(Western blotting)分析表現蛋白載體 CaNSFL/pET-28b(+) 經 IPTG 誘導後之表現蛋白---------------------------------- 94
圖二十、利用電泳(SDS-PAGE)及西方轉漬(Western blotting)分析表現蛋白載體 CaNSN/pET-28b(+) 經 IPTG 誘導後之表現蛋白 --------------------------------- 96
圖二十一、利用電泳(SDS-PAGE)及西方轉漬(Western blotting)分析表現蛋白載體 CyCaNSN/pET-28b(+) 經 IPTG 誘導後之表現蛋白 -------------------------- 98
圖二十二、利用電泳(SDS-PAGE)及西方轉漬(Western blotting)分析表現蛋白載體 TSNFL/pET-28b(+) 經 IPTG 誘導後之表現蛋白 ---------------------------- 100
圖二十三、利用電泳(SDS-PAGE)及西方轉漬(Western blotting)
分析表現蛋白載體 INNSFL/pET-28b(+) 經 IPTG 誘
導後之表現蛋白 ---------------------------- 102
圖二十四、利用電泳(SDS-PAGE)及西方轉漬(Western blotting)
分析表現蛋白載體 WSNSFL/pET-28b(+) 經 IPTG
誘導後之表現蛋白 -------------------------- 104
圖二十五、CaCV 三種不同構築所表現之重組 NSs 蛋白於純化前
後之分子量與免疫特性確認 ------------------ 106
圖二十六、三種不同 tospoviruses 包括 TSWV、INSV 及 WSMoV
之全長 NSs 基因序列構築載體所表現之重組非結構
性蛋白於純化前後之分子量與免疫特性確認 ---- 108
圖二十七、CaCV 三種不同構築方式所表現之重組 NSs蛋白之抗
原性確認 ---------------------------------- 110
圖二十八、利用 CaCV NSs 蛋白部分 N 端序列所製備之抗體(anti-CaNSN)於西方轉漬分析與其他三種 tospoviruses(TSWV、INSV 及 WSMoV)純化 NSs 表現蛋白及感染也片反應之結果 ---------------- 112
圖二十九、利用 TSWV NSs 蛋白序列所製備之抗體(anti-TSNSFL)於西方轉漬分析與其他三種 tospoviruses(CaCV、INSV 及 WSMoV)純化 NSs 表現蛋白及感染也片反應之結果 --------------- 114
圖三十、利用 TSWV NSs 蛋白序列所製備之抗體(anti-INNSFL)
於西方轉漬分析與其他三種 tospoviruses(CaCV、INSV
及 WSMoV)純化 NSs 表現蛋白及感染也片反應之結果----------------------------------------------- 116
圖三十一、利用 SDS 免疫擴散法分析 CaCV、TSWV 及 INSV 重組NSs蛋白抗血清之血清反應特性 ---------- 118
圖三十二、利用 CaV 部分 NSs N 端序列所製備之抗體於酵素連結免疫吸附法(ELISA)與其同源及三種異源 tospoviruses 之純化 NSs 表現蛋白之反應結果 ------------------------------------------- 119
圖三十三、利用 TSWV NSs 序列所製備之抗體於酵素連結免疫吸
附法(ELISA)與其同源及三種異源 tospoviruses 之純
化NSs 表現蛋白之反應結果 ----------------- 120
圖三十四、利用 INSV NSs 序列所製備之抗體於酵素連結免疫吸
附法(ELISA)與其同源及三種異源 tospoviruses 之純化NSs 表現蛋白之反應結果 --------------- 121
圖三十五、應用 CaCV NSs 蛋白部分 N 端序列所製備之抗體於酵素連結免疫吸附法(ELISA)檢測不同稀釋倍數下之蝴蝶蘭黃化輪斑病徵組織研磨之反應結果 ------ 122
圖三十六、利用酵素連結免疫吸附法(ELISA 及 RT-PCR)測試蝴蝶蘭不同黃化輪斑部位中 NSs 及 NP 蛋白與基因之累積 ------------------------------------ 123
圖三十七、利用三種不同 tospoviruses 之 NSs 及 NP 蛋白抗體於酵素連結免疫吸附法下檢測八株呈現典型黃化輪斑病徵之蝴蝶蘭樣品之結果 -------------------- 125
尤崇魁,蝴蝶蘭栽培技術,園藝世界出版社出版,臺北,156 pp(1989)。
尤崇魁,洋蘭百科,園藝世界雜誌社,臺北,158 pp(2001)。
林鳳琪、王清玲、邱一中、鄭櫻慧,傳播番茄斑萎凋病毒屬病毒之薊馬及其防治研究,p. 123-146,農作物害蟲及其媒介病害整合防治技術研討會專刊-台灣省農業試驗所特刊出版,臺中(2011)。
李秉璋、劉翠玲, 2009台灣國際蘭展暨蘭花研討會報導,p. 70-74,台灣經濟研究院生物科技產業研究中心-農業生技產業季刊,臺北(2009)。
張清安,植物病毒鑑定及診斷技術,植物保護新科技研討會專刊-台灣省農業試驗所特刊,臺中,57:35-45(1996)。
張清安,文心蘭病毒病與健康種苗認證制度, p. 169-185,文心蘭專刊,財團法人台灣區花卉發展協會出版,臺北, 269 pp (2002)。
張清安、陳加忠,蘭花母本保存園及附介質輸美蘭花溫室之設施與管理,行政院農業委員會動植物防疫檢疫局出版,臺北,63 pp(2004)。
張清安,植物保護技術專刊系列 1 – 蘭花病毒病,行政院農業委員會動植物防疫檢疫局出版,臺北, 62 pp(2005)。
張清安,蘭花病毒之診斷、鑑定與偵測,p.103-108,植物重要防檢檢疫病害診斷鑑定技術研習會專刊 –行政院農委員會動植物防疫檢疫局,臺北,118 pp(2006)。
張清安,蘭花病毒檢測技術發展現況,p. 22-28,農科新世紀-行政院農業委員會屏東農業生物技術園區籌備處出版,屏東(2007)。
張清安,蘭花種苗病毒檢測與相關產業發展趨勢,p. 42-48,農業生技產業季刊-財團法人臺灣經濟研究院生物科技產業研究中心出版,臺北(2007)。
張清安,推動蘭花病毒病檢測與防治之歷程與現況,台灣花卉園藝出版,臺北,271 pp(2010)。
陳宗祺、康雅琪, Tospovirus 屬病毒之診斷與鑑定,7:57-65,植物重要防疫檢疫病害診斷鑑定技術研討會專刊-行政院農委會動植物防疫檢疫局出版,臺北,82 pp(2008)。
陳姿蓉,可同時檢測齒舌蘭輪斑及蕙蘭嵌紋病毒之雙特異性抗體之製備與應用,碩士論文,朝陽科技大學應用化學系生化科技碩士班,臺中(2008)。
楊玉婷,全球蘭花發展現況與未來展望,p. 7-11,農業生技產業季刊-財團法人臺灣經濟研究院生物科技產業研究中心出版,臺北(2010)。
黃莉欣、蘇文瀛,薊馬在 Tospovirus 病害上的角色及其防治,p. 83-100,植物蟲媒病害與防治研討會專刊-行政院農業委員會動植物防疫檢疫局出版,臺北,278 pp(2007)。
鄧汀欽,三十年台灣瓜類病毒病害的流行趨勢演變,農業試驗所特刊 152 號: 147-197(2011)。
劉賢玲,臺灣蝴蝶蘭之病毒病因研究,碩士論文,國立臺灣大學植物病理學研究所,臺北(2000)。
蘇怡蓉,應用蕙蘭嵌紋病毒N端序列作為先驅序列誘導香蕉萎縮病毒鞘蛋白於pET細菌表現載體順利表達之研究,碩士論文,朝陽科技大學應用化學系生化科技碩士班,臺中(2012)。
Adam, G., Roggero, P., Malavasif, R., Milne, G., and Papa, G. Appreach to a general tospovirus assay using antibodies to purified tomato spotted wilt tospovirus G proteins. EPPO Bull. 25:247-257(1995a).
Adam, G., Peters, D., and Goldbach, R. Serological comparison of Tospovirus isolates using polyclonal and monoclonal antibodies. Acta Hort. 431:135-138(1995b).
Adkins, S. Tomato spotted wilt virus–positive steps towards negative success. Mol. Plant Pathol. 1:151-157(2000).
Bezerra,I. C., Resende, R. de O., Pozzer, L., Nagata, T., Kormelink,R., and de Avila, A. C. Increae of tospoviral diversity in Brazil with the identification of two new tospovirus species, one from chrysanthemum and one from zucchini. Phytopathology 89:823-830(1999).
Bridgen, A., Weber, F., Fazakerley, J. K., and Elliott, R. M. Buynyamwera bunyavirus nonstructural protein, NSs is a nonessential gene product that contributes to viral pathogenesis. Proc. Natl. Acad. Sci. USA 98:664-669(2001).
Brittlebank, C. C. Tomato disease. J. Agric. Victoria 17:213-235(1919).
Bucher, E., Sijen, T., de Haan, P., Glodbach, R., and Prins, M. Negative-strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at ananlogus genomic positions. J. Virol. 77:1329-1336(2003).
Chang, C ., J. L. Bowmana., W. Dejohne., S. Lander and E. M. Meyerowitz, Restriction fragment length polymorphism linkage map for Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 85:6856-6860(1988).
Chen, X. F., Dong, J. H., Fang, Q., Li, T. T., Ding, M., Zhang Z. K. Detection the tospovirus from Phalaenopsis in Yunnan. Arch. Plant Pathol. 38:31-34(2008).
Chen, C. C. and Chiu, R. J. A tospovirus infection peanut in Taiwan. Acta Hortic. 431: 57-67(1996).
Chiemsombat, P., and Adkins, S. Tospoviruses. In: Rao,G. P., Kumar, P. L., Holguin-Pena, R. J.(Eds.), Characterization, Diagnosis and Management of Plant Viruses, Vol. 3: Vegetable and Pulse Crops. InStudium Press, Texas, USA P.1-37(2006).
Chen, T. C., Lu, Y. Y., Cheng, Y. H., Li, J. T., Yeh, Y. C., Kang, Y. C., Chang, C. P., Li, H. H., Pang. J. C., and Yeh,S. D. Serological relationship between Melon yellow spot virus and Watermelon silver mottle virus and differential detection of the two viruses in cucurbits. Arch. Virol. doi: 10. 1007/s00705-010-0688-y (2010).
Chen, X. F., Dong, J. H., Fang, Q., Li, T. T., Ding, M., Zhang Z. K. Detection the tospovirus from Phalaenopsis in Yunnan. Arch. Plant Pathol. 38﹕31-34.(in chinese)(2008).
Chiemsombat, P., Sharman, M., Srivilai, K., Campbell, P., Persley, D., Attathom, S. A new tospovirus species infecting Solanum esculentum and Capsicum annuum in Thailand. Australasan Plant Disease Notes, 2010, 5, 75-78(2010).
Chu, F. H., and Yeh, S. D. Comparison of replication froms and ambisense M RNA of Watermelon silver mottle virus with other tospoviruses. Phytopathology 88:351-358(1998).
Chu, F. H., Chao, C. H., Chung, M. H., Chen, C.C., and Yeh, S. D. Completion of the genome sequence of Watermelon silver mottle virus and utilization of degenerate primers for detecting tospoviruses in five serogroups. Phytopathology 91:361-368(2001a).
Chu, F. H., Chao, C.H., Peng, Y. C., Lin, S. S., Chen, C. C., and Yeh, S. D. Serological and molecular characterization of Peanut chlorotic fan-spot virus, a new species of the genus Tospovirus. Phytopathology 91:856-863(2001b).
Cho Y. I., No H. K. and Meyers S. P. Physicochemical Characteristics and Functional Properties of various Commercial Chitin and Chitosan Products. J. Agric. Food Chem. 46(9): 3839-3843.(1998).
Ciuffo, M., Kurowski, C., Vivoda, E., Copes, B., Masenga,V., Falk, B. W., and Turina, M. A new Tospovirus sp. In cucurbit crops in Mexico. Plant Dis. 93: 467-474(2009).
Daughtrey M, Jones RK, Moyer JW, Daub ME &; Baker JR. Tospoviruses strike the greenhouse industry – INSV has become a major pathogen on flower crops. Plant Disease 81, 1220-1230 (1997) .
de Avila, A. C., de Haan, P., Kitajima, E. W., Kormelink, R., Resende, R. de O., Goldbach, R. W., and Peters, D. Characterization of a distinct isolate of Tomato spotted wilt virus(TSWV. From Impatiens sp. In the Netherlands). J. Phytopathology 134:22-151(1992).
de Avila, A. C., de Haan, P., Kormelink, R., Resende Rde, O., Goldbach,R. W., and Peters, D. Classification of tospoviruses based on phylogeny of nucleoprotein gene sequences. J. Gen. Virol. 74:153-159(1993a).
de Avila, A. C., de Haan, P., Smeets, M. L. L., Resende, R. de O., Kormelink, R., Kitajima, E. W., Goldbach, R. W., and Peters, D. Distinct levels of relationships between Tospovirus isolates. Arch. Virol. 128:211-227(1993b).
de Haan, P., de Avila, A. C., Kormelink, R., Westerbroek, A., Gielen, J.J., Peters, D., and Goldbach, R. The nucleotide sequence of the S RNA of Impatiens necrotic spot virus, a novel tospovirus. FEBS Lett. 306:27-32(1992).
de Haan, P., Kormelink, R., Resende, R. d. O., van Poelwijk,F., Petere, D., and Goldbach, R. Tomato spotted wilt virus L RNA encodes a putative RNA polmnerase. J. Gen. Virol. 72:2207-2216(1991).
de Haan, P., Wagemkers, L., Peters, D., and Goldbach, R. W. The S RNA segment of Tomato spotted wilt virus has an ambisense character. J. Gen. Virol. 71:1001-1007(1990).
Dong, J. H., Cheng, X. F., Yin, Y. Y., Fang, Q., Ding, M., Li,T. T., Zhang, L. Z., Su, X. X., Huang McBeath, J., and Zhang, Z. K. Chaacterization of , a new tospovirus in China. Arch. Virol. 153:855-864(2008.)
Francki R.I.B., Fauquet C.M., Knudson D.L., Brown F., Classification and nomenclature of viruses. In: Fifth report of the International Committee on Taxonomy of Viruses. Arch. Virol. Suppl. 2(1991).
German, T. L., Ullman, D. E., and Moyer J. W. Tospoviruses: Diagnosis, Molecular Biology, Phylogeny, and Vector Relationships Annu. Rev. Phytopathology 30:315-348(1992).
Goldbach, R. W., and Kuo, G. Introduction: Proceedings of the international symposium on tospovirus and thrips of floral and vegetable crops. Acta Hort. 43:21-26(1996).
Goldbach, R. and Peter, D. Possible cause of the emergence of tospovirus disease. Seminar in Virology 5:113-120(1994).
Hassani-Mehraban, A., Botermans, M., Verhoeven, J. T., Meekes, E., Saaijer,J., Peters, D., Goldbach, R., and Kormelink, R. A distinct tospovirus causing necrotic stresk on Alstroemeria sp. In Colombia. Arch. Virol. 155: 423-428(2010).
Hassani-Mehraban, A., Saaijer, J., Peters, D., Goldbach, R., and Kormelink, R. Molecuar and biological comparison of two Tomato yelliw ring virus(TYRV)isolates: challenging the Tospovirus species concept. Arch. Virol. 152:85-96(2005).
Hsu, H. T., Chen, C. C. and Yeh, S. D. Identification of a Tospovirus infecting calla lily Zantedeschia spp. XΠth International Congress of Virology. P 505 (2002).
Jan, F. J., Chen, T. C., and Yeh, S. D. Occurrence, importance, taxonomy, and control thrips-borne tospoviruses, P391-411 in H. Huang and S. N. Acharya(eds): Advances in Plant Disease Management. Research Signpost, Kerala, India(2003).
Jain, R. K., S. Bag, K. Umamaheswaran, and B. Man-dal. Natural infection by tospoviruses of cucurbitaceous and fabaceous vegetable crops in India. J. Phytopathol. 155﹕22-25(2007).
Jain RK., HR Pappu, SS Pappu, MK Reddy and A Vani. Watermelon bud necrosis tospovirus is a distinct virus species belonging to serogroup IV.
Archives of Virology 143: 1637-1644(1998).
Jones,R. A. C., and Sharman, M. Capsicum chlorosis virus infecting Capsicum annuum in the East Kimberley region of Western Australia. Australas. Plant Pathol. 34:397-399 (2005).
Kato,K., Hanada,K., and Kameya-Iwaki, M. Watermelon silver mottle virus: A distinct species of the genus Tospovirus isolated from melon. Phytopathology 90:422-426(2000).
Kikkert, M., van Lent, J., Storms, M., Bodegom, P., Kormelink, R. &;
Goldbach, R. Tomato spotted wilt virus particle morphogenesis
in plant cells. Journal of Virology 73, 2288±2297(1999).
Kikkert,M., Verschoor, A. D., Kormelink, R., Peters, D., and Goldbach, R. W. Tomato spotted wilt virus Glycoproteins exhibit trafficking and localization signals that are functional in mammalin cells. J. Virol. 75:1004-1012(2001).
Kormelink, R., Kitajima, E. W., de Haan, P., Zuidema, D., Peters, D., and Goldbach, R. W. The nonstructural protein(NSs)encoded by the ambisense S RNA segment of Tomato spotted wilt virus is associated with fibrous structures in infected plant cells. Virology 181:459-468(1991).
Kormelink, R., de Haan, P., Meurs, C., Peters, D., and Goldbach, R. W. The nucleotide sequence of the M RNA segments of Tomato spotted wilt viru, a bunyavirus with two ambisense RNA segments. J. Gen. Virol. 73:2795-2804(1992).
Kormelink, R., Storms, M., van Lent, J., Peters, D., and Goldbach, R. W. Expression and subcellular location of the NSm protein of Tomato spotted wilt virus(TSWV), a putative viral movement protein. Virol 200:56-65(1994).
Law, M. D., and Moyer, J. W. A tomato spotted wilt-link virus with a serologically distinct N protein. J. Gen. Virol. 71:933-938 (1990).
Law, M. D., Speck, J., and Moyer, J. W. The M RNA of Impatiens necrotic spot Tospovorus(Bunyaviridae) has an ambisense genomic organization. Virology 188:732-741(1992).
Lebas,B. S. M., and Ochoa-Corona, F. M. Impatiens necrotic spot virus . In: Rao, G. P., Bragard, C., Lebas, B.S. M.(Eds.), Characterization, Diagnosis and Management of Plant Viruses. Vol. 4:221-243(2007).
Lee, A. M., Persley,D. M., and Thomas, J. E. A new tospovirus sergroup Ⅳ species infecting capsicum and tomato in Queensland, Australia. Aust. Plant Pathol. 31:231-239(2002).
Lewandowski, D. J., and Adkins, S. The tubule-forming NSm protein from Tomato spotted wilt virus complements cell-to-cell and long-distance movement of Tobacco mosaic virus hybrids. Virology 342:26-37(2005).
Li,W., Lewandowski, D. J., Hilf, M. E., and Adkins, S. Identification of domains of the Tomato spotted wilt virus NSm protein involved in tubule fromatiom, movement and symptomatology. Virology 390:110-121(2009).
Lin, Y. H., Chen, T. C., Hsu,H. T., Liu, F. L., Chu, F. H., Chen, C. C., Lin,Y. Z., and Yeh, S. D. Serological comparison and molecular characterization for verification of Calla lily chlorotic spot virus as a new tospovirus species belonging to Watermelon silver mottle virus serogroup. Phytopathology 95:1482-1488(2005).
Marchoux, G, Gebre- Selassie, K., and Villevieille, M. Detection of Tomato spotted wilt virus and transmission by Frankliniella occidentalis in France. Plant Path. 40:347-351(1991).
Moritz G, Kumm S, Mound L., Tospovirus transmission depends on thrips ontogeny. Virus Research 100, 143-149(2004).
Mohamed, N. A. Isolation and characterization of subviral structres from
Tomato spotted wilt virus. J. Gen. Virol. 53:197-208(1981).
Mumford, R. A., Barker, I., and Wood, K. R. The biology of the tospoviruses. Ann. Appl. Biol. 128:159-183(1996).
Pappu, H. R., Jones, R. A. C., and Jain, R. K. Global ststus of tospovirus epidemics in diverse cropping systems: Successes achieved and challenges ahead. Virus Res. 141: 219-236(2009).
Parrella, G., Gonalons, P., Gebre-Selassi&;egrave;, K., Vovlas,C., and Marchoux, G. An update of the host range of Tomato spotted wilt virus. J. Plant Pathol. 85:227-264(2003).
Peters, D., Wijkamp, L., van de Wetering, F., Goldbach, R. Vectorrelations in the transmission and epidemiology of tospoviruses. Acta Hort. 431:29-42(1996).
Prins, M., and Goldbach, R. The emerging problem of tospovirus infection and nonconventional methods of control. Trends Microbiol. 6:31-35(1998).
Reddy, D. V. R., and Wightman, J. A. Tomato spotted wilt virus: Thrips transmission and control. Adv. Dis. Vector Res. 5:203-220(1988).
Reddy, D. V. R., Ratna, A. S., Sudarshana, M. R., and Kiran Kumar, I. Serological relationships and purification of bud necrosis virus, a tospovirus occurring in peanut(Archis hypogaea L.)in India. Ann. Appl. Biol. 120:279-286(1992).
Roggero, P., Ogliara, P., Dellavalle, G., Lisa, V., Malavasi, F., and Adam, G. Ageneral tospovirus assay using monoclonal antibodies against Tomato spotted wilt virus glycoproteins. Acta Hort. 431:167-175(1996a).
Roth, B. M., Pruss, G. J., and Vance, V. B. Plant viral suppressors of RNA silencing. Virus Res. 102:97-108(2004).
Ruoslahti, E., and Pierschbacher, M. D. Arg-Gly-Asp: A versatile cellrecognition signal. Cell 44:517-518(1986).
Sakimura, K. The present status of thrips-borne disease. Pages 33-40 in: Biological transmission of disease agents. K. Maramorocsh(ed.), Academic Press, New York(1962).
Samuel, G., Bald, J. G., and Pittman, H. A. Investigation on “ spotted wilt” of tomatoes. Aust. Counc. Sci. Ind. Res. Bull. 44:1-64(1930).
Satyanarayana, T., Gowda, S., Reddy, K. L., Mitchell, S. E., Dawson, W. O., and Reddy,D. V. R. Peanut yellow spot virus is a member of a new serogroup of Tospovirus genus based on small (S) RNA sequence and organization. Arch. Virol. 143:353-364(1988).
Satyanarayana, T., Mitchell, S. E., Reddy, D. V., Kresovich, S., Jarret, R., Naidu, R. A., Gowda, S., and Demski, J.W. The complete nucleotide sequence and genome organization of the M RNA segment of Peanut bud necrosis tospovirus and comparison with other tospoviruses. J. Gen. Virol. 77:2347-2353(1996).
Sin, S. H., McNulty, B. C., Kennedy, G. G., and Moyer, J. W. Viral genetic determinants for thrips transmission of Tomato spotted wilt virus.Proc. Natl. Acad. Sci. USA. 102:5168-6173(2005).
Singh, S. J., and M. Krishnareddy. Watermelon bud necrosis﹕a new tospovirus disease. Acta. Hort. 431﹕68-77(1996).
Stobbs, L. W., Broadbent, A. B., Allen, W. R., and Stirling, A. L. Transmossion of Tomato spotted wilt virus by the western flower thrip to weeds and native plants found in southern Ontario. Plant Dis. 76:23-29(1992).
Storms, M. M., Kormelink, R., Peters,D., van Lent, J. W., and Goldbach, R. W. The nonstructural NSm protein of Tomato spotted wilt virus induces tubular structures in plant and insect cells. Virology 214:485-493(1995).
Ullman, D. E., Sherwood, J. L., and German. T. L. Thrips as vectors of plant pathogens. In: Lewis, T.(Ed.), Thrips as Crop Pests. CAB International, p.539-564(1997).
Ullman, D. E., Westcot, D. M., Chenault, K. D., Sherwood, J. L., and German, T. L. Compartmentalization, intracellular transport, and autophagy of tomato spotted wlit tospovirus proteins in infected thrips cells. Phytopathology 85﹕644-54(1995).
van Kammen, A., Henstra, S., and Le, T. S. Morphology of Tomato spotted wilt virus. Virology 30:574-577(1966).
Vaira, A. M., Roggero, P., Luisoni, E., Masenga,V., Milne, R. G, and Lisa, V. Characterization of two tospovriuses in Italy: Tomato spotted wilt virus and Impatiens necrotic spot virus. Plant Pathol. 42:530-542(1993).
Verklieij, F. N. &; PETERS, D. Characterization of a defective form of tomato spotted wilt virus. Journal of General Virology 64, 677-686(1983).
Wen, Y. Y. Bachelor thesis. Nucleotide sequence analyses of the N gene of a tospovirus isolated from Zantedeschia aethiopica. Department of Plant Pathology. National Chung-Hsing University. Taichung. Taiwan (1998).
Whitfi eld, P.D., Noble, P.J.M, Major, H. et al. Metabolomics as a diagnostic tool for hepatology: validation in a naturally occurring canine model. Metabolomics, 1:215–225(2005).
Takeda, A., Sugiyama, K., Nagano, H., Mori, M., Kaido, M., Mise, K., Tsuda, S., and Okuno, T. Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Lett. 532:75-79(2002).
Tsompana, M., and Moyer, J. W., Tospoviruses. In: Mahy, B. W. J., van Regenmortel, M. H. V.(Eds.), Encyclopedia of Virology, vol. 5, 3rd ed. Elsevier Ltd., Oxford, UK, p.157-162(2008).
Yeh, S. D., and Chang, T. F. Nucleotide sequence of the N gene of Watermelon silver mottle virus, a proposed new member of the genus Tospovirus. Phytopathology 85:58-64(1995).
Yeh, S. D., Cheng,Y. H., Jih, C. L., Chen, C. C., and Chen, M. J. Identification of tomato spotted infecting horn melon and watermelon. Plant Prot. Bull. 30:319-320(1988).
Yeh, S. D., Chao, C. H., Cheng, Y. H., and Chen, C. C. Serological comparison of four distinct tospoviruses by polyclonal antibodies to purified nucleocapsid proteins. Acta Hort. 431:58-64(1996).
Yeh, S. D., and Chu, F. H. Occurrence of tospoviruses and recent development for their rapid detection. Plant Pathol. Bull. 8:125-132(1999).
Yen, S. D., and Gonsalves, D. Purification and immunological analysis of cylindrical-inclusion protein induced by Papaya ringsopt virus and Watermelon mosaic virus I. Phytopathology 74:1273-1278(1984).
Yen, S. D., Lin, Y. C., Cheng, Y. H., Jin, C. L., Chen, M. J., and Chen, C. C. Identification of tomato spotted with-like virus on watermelon in Taiwan. Plant Dis. 76:835-840(1992).
Zhang, Q. P., Ding, Y. M., Li, M., Firstreport of Impatiens necrotic spot virus infecting Phalaenopsis and Dendrobium orchids in Yunnan Province, China. Plant Dis. 94﹕915(2010).
Zhang, Q. P., Ding, Y. M., Li, M., Zhou, J., Bai, Y. H., Cun, D. Y., and Cao, Y. H. Detection and molecular identification of Impatiens necrotic spot virus isolated from spotted Oncidium. Plant Quarantine 22﹕348-351.(in Chinese)(2008).
Zheng, Y. X., Chen, C. C., Yang, C. J., Yeh, S. D., and Jan, F. J. Identification and characterization of a tospovirus causing chlorotic ringspots on Phalaenopsis orchids. Eur. J. Plant Pathol. 120﹕199-209(2008).
Zheng, Y. X., Huang, C. H., Cheng, Y. H., Kuo, F. Y. and Jan, F. First report of Tomato spotted wlit virus in sweet peper in Taiwan. Plant Dis. 94﹕920(2010a).
Zheng, Y. X., Li, Y. Z., Liu, Y. T., Xu, X. G., Y, M., and Zhu Q. Y. Identification of Impatiens necrotic spot virus from Phalaenopsis in Yunnan. Acta Horticulturae Sinica 37﹕313-318(in Chinese)(2010b).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top