(100.24.122.117) 您好!臺灣時間:2021/04/12 06:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳岱陽
研究生(外文):Dai-yang Wu
論文名稱:反蛋白石結構之氣致色變金屬氧化物之製備及特性探討
論文名稱(外文):Preparation and characterization of gasochromic metal oxides with inverse opal structure
指導教授:詹志潔
口試委員:施仁斌陳錦毅
口試日期:2013-06-19
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:170
中文關鍵詞:反光子晶體氣致色變氫氣感測器
外文關鍵詞:inverse photonic crystalsgasochromichydrogen gas sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
在目前氣體感測器領域中,主要還是以WO3作為變色材料,因為其穩定性好、壽命長,而在其中在加入光子晶體模板可使其特徵波峰更為明顯,進而讓著褪色的反應效果更好,但是其缺點就是材料價格較為昂貴。本實驗利用較便宜之金屬氧化物TiO2、Nb2O5、Fe2O3、MoO3來取代WO3做為氣致色變材料之特性探討。
本研究藉由加熱式自然沉降法來組裝Polystyrene球,其粒徑有280 nm、377 nm兩種,其特徵波峰位置分別在643 nm、854 nm,而後將配置完成之TiO2、Nb2O5、Fe2O3、MoO3金屬氧化物溶液,利用滲入法分別將其填充於PS模板中的孔隙,PS模板組裝為固含量0.1 g/ml之PS球懸浮液,滴於玻璃基材上,其面積固定為直徑0.7 cm的圓形模板。將填充完成之元件利用燒結法來移除PS模板,所剩之金屬氧化物骨架為反光子晶體結構,又稱反蛋白石結構,即成功製成反蛋白石結構之氣致色變金屬氧化物。
在做氣致色變探討上,我們於元件中加入Pt、Pd觸媒層,發現觸媒層有其一定之極限量,太多除了會導致材料之浪費,也可能使其變色效果不佳,而其中Pd觸媒比Pt觸媒效果略佳;而四種金屬氧化物中分別添加Pt、Pd觸媒層做著褪色反應後,其效果最佳的為377 nm PS球之反光子晶體結構Fe2O3,其著色反射率差達2 %,且行褪色反應完全,而MoO3雖然反射率差達12 %,但是其褪色速度極慢(800 s回復1 %),不適合用於感測器。
WO3 plays an important role as a gasochromic material for gas sensors because of its good stability and longevity. The characteristic wavelength is obviously increased with the adding of photonic crystals template,improving also the decolorization efficiency. In this research, different gasochromic materials with lower price such as TiO2、Nb2O3、Fe2O3、MoO3 are chosen to overcome the disadvantage of WO3.
In this research,polystyrene spheres with 280 nm and 377 nm particle size,characteristic wavelength at 643 nm and 854 nm were synthesized using sedimentation method with heating. The PS template of gap were then respectively filled in with TiO2、Nb2O3、Fe2O3、MoO3 metal oxide solution. Using the infiltration method was used to fill the pores of the template in the PS,PS is the content of the template assembly of 0.1 g / ml suspension of PS ball,drops on a glass substrate,the area is fixed at 0.7 cm diameter circular templates. The component will fill the complete sintering method to remove the use of PS template,the remaining skeleton of the inverse metal oxide photonic crystals structure,also known as inverse opal structure,that made the success of gasochromic metal oxides with inverse opal structure.
In the investigation of gasochromic,adding excessive Pt、Pd catalyst layer was proved cause ineffective decolorization. In this research,the efficiency of Pd catalyst is better than Pt catalyst. The 377 nm PS ball of Fe2O3 with inverse photonic crystals structure was the most efficient decolorization material,ith 2% different reflectance in colorization. Although MoO3 has a 12% different reflectance in colorization,but its decolorization rate (800 s/1 % ) is too slow for sensor.
誌謝 I
摘要 II
Abstract IV
圖目錄 X
表目錄 XXV
第一章 緒論 1
1.1 前言 1
1.2 光子晶體簡介 3
1.3 反光子晶體結構 6
1.4 氣體感測器簡介 7
第二章 文獻回顧 9
2.1 自然界光子晶體 9
2.2 人造光子晶體之方法 11
2.2.1 自然沉降法(sedimentation method) 12
2.2.2 毛細吸引力法(attractive capillary method) 14
2.2.3 有限空間排列法(physical confinement method) 17
2.2.4 可逆電場法(electric field-reversible method) 18
2.2.5 電泳沉澱法(electrophoretic deposition method) 19
2.2.6 界面成長法(growth at an interface) 20
2.2.7 高速離心法(centrifugal method) 21
2.2.8 強化毛細力法 22
2.2.9 熱對流法(heat convective method) 23
2.3 光子晶體的光學性質 24
2.4 反光子晶體結構之製備方法 26
2.4.1 溶膠凝膠(Sol-Gel)法 27
2.4.2 滲透法 28
2.4.3 電化學沉積法 29
2.5 氣致色變原理 31
2.6 溶膠-凝膠法(Sol-Gel)原理 34
2.7 研究動機與目的 36
第三章 實驗方法與步驟 37
3.1 實驗藥品 37
3.2 實驗儀器 38
3.3 實驗架構 39
3.4 實驗步驟 40
3.4.1 玻璃基材前處理 40
3.4.2 製備光子晶體模板 41
3.4.3 金屬鹽類溶液配置 42
3.4.4 光子晶體結合金屬鹽類反射式感測元件製作步驟 43
3.4.5 製備反光子晶體 44
3.4.6觸媒層Pt、Pd之配置及製備 45
3.5 實驗裝置 46
第四章 結果與討論 47
4.1 光子晶體特性分析 47
4.2 金屬氧化物之成分分析 48
4.3 利用燒結法製作反蛋白石結構之燒結溫度、速率、時間 53
4.3.1 燒結溫度之決定 53
4.3.2 燒結速率之決定 54
4.3.3 燒結時間之決定 56
4.4 光子晶體結合金屬氧化物之特性 59
4.4.1 滲入金屬氧化物次數之特性-光子晶體結構 59
4.4.2 滲入金屬氧化物次數之特性-反光子晶體結構 76
4.4.3 由SEM圖觀察最佳滲入次數之反光子晶體結構截面 102
4.5 反射式感測元件在氫氣環境下之特性討論 111
4.5.1 光子晶體結構於100 %氫氣下之變色現象 111
4.5.2 反光子晶體結構於100 %氫氣下之變色現象 134
4.5.3 正反光子晶體結構於100 %氫氣下著褪色之比較 158
第五章 結論與未來展望 164
5.1 結論 164
5.2 未來展望 166
參考文獻 167
1.蔡嬪, 曾明漢, 氣體感測器簡介. 材料與社會, 68(1992) 50.
2.邱顯堂, 變色性材料. 38(1991) 74.
3.陳永星, 單分散微球之電泳自組裝技術應用於三維結構光子晶體模板製作. 逢甲大學材料科學與工程學系, 2007.
4.John, Sajeev, Strong localization of photons in certain disordered dielectric superlattices. Physical review letters, 1987. 58(23): p. 2486-2489.
5.Yablonovitch, E., Inhibited spontaneous emission in solid-state physics and electronics. Physical review letters, 1987. 58(20): p. 2059-2062.
6.http://nano.nchc.org.tw/.
7.董繼堯, 空氣式超音波對 SiO2 粒子組裝的影響. 2004.
8.鍾儀文, 以膠體製程製備光子晶體及其性質之探討. 成功大學材料科學及工程學系, 2007.
9.http://pansci.tw.
10.行政院國家科學委員會.
11.丁效強, 光子晶體抗反射膜研究. 2005.
12.Müller, M., et al., Dye-containing polymer beads as photonic crystals. Chemistry of materials, 2000. 12(8): p. 2508-2512.
13.許智偉, 光子晶體之製備及其於化學感測上的應用. 2005.
14.陶德和, 電流式氣體感測器簡介. 科儀新知, 15(1993) 64.
15.葉陶淵, 化學感測器中氣體感測器的新動向. 科儀新知, 20(1999) 72.
16.Sberveglieri, G., Recent developments in semiconducting thin-film gas sensors. Sensors and Actuators B: Chemical, 1995. 23(2): p. 103-109.
17.bojiyida.blog.163.com/blog/static/26137642007514103618542/.
18.Xia, Y., et al., Monodispersed colloidal spheres: old materials with new applications. Advanced Materials, 2000. 12(10): p. 693-713.
19.Vickreva, O., O. Kalinina, and E. Kumacheva, Colloid crystal growth under oscillatory shear. Advanced Materials, 2000. 12(2): p. 110-112.
20.Dimitrov, A.S., et al., Observations of latex particle two-dimensional-crystal nucleation in wetting films on mercury, glass, and mica. Langmuir, 1994. 10(2): p. 432-440.
21.Dimitrov, A.S., T. Miwa, and K. Nagayama, A comparison between the optical properties of amorphous and crystalline monolayers of silica particles. Langmuir, 1999. 15(16): p. 5257-5264.
22.Meng, Q.-B., et al., Fabrication of highly ordered porous structures. Applied physics letters, 2000. 77(26): p. 4313-4315.
23.Park, S.H., D. Qin, and Y. Xia, Crystallization of mesoscale particles over large areas. Advanced Materials, 1998. 10(13): p. 1028-1032.
24.Gong, T., D.T. Wu, and D.W. Marr, Electric field-reversible three-dimensional colloidal crystals. Langmuir, 2003. 19(15): p. 5967-5970.
25.Holgado, M., et al., Electrophoretic deposition to control artificial opal growth. Langmuir, 1999. 15(14): p. 4701-4704.
26.Im, S.H., et al., Three-dimensional self-assembly of colloids at a water-air interface: A novel technique for the fabrication of photonic bandgap crystals. Advanced Materials, 2002. 14(19): p. 1367-1369.
27.Ko, Y.G., et al., Fabrication of colloidal crystals on hydrophilic/hydrophobic surface by spin-coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011. 385(1): p. 188-194.
28.Wijnhoven, J.E. and W.L. Vos, Preparation of photonic crystals made of air spheres in titania. Science, 1998. 281(5378): p. 802-804.
29.Vlasov, Y.A., et al., On-chip natural assembly of silicon photonic bandgap crystals. Nature, 2001. 414(6861): p. 289-293.
30.Hewitt, P.G., Conceptual physics, eighth edition, Addison &; Wesley, New York, . Chapter 27(1998) 496.
31.Taton, T.A. and D.J. Norris, Device physics: Defective promise in photonics. Nature, 2002. 416(6882): p. 685-686.
32.Campbell, M., et al., Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature, 2000. 404(6773): p. 53-56.
33.Ye, Y.-H., S. Badilescu, and V.-V. Truong, Large-scale ordered macroporous SiO2 thin films by a template-directed method. Applied Physics Letters, 2002. 81(4): p. 616.
34.Soten, I., et al., Barium Titanate inverted opals—Synthesis, characterization, and optical properties. Advanced Functional Materials, 2002. 12(1): p. 71-77.
35.Kubo, S., et al., Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic-isotropic phase transition. Journal of the American Chemical Society, 2002. 124(37): p. 10950-10951.
36.Tessier, P.M., et al., Structured metallic films for optical and spectroscopic applications via colloidal crystal templating. Advanced Materials, 2001. 13(6): p. 396-400.
37.Wijnhoven, J., et al., Electrochemical assembly of ordered macropores in gold. Advanced Materials, 2000. 12(12): p. 888-890.
38.Bartlett, P.N., Electrodeposition of Nanostructured Films Using Seff-Organizing Templates. Interface-Electrochemical Society, 2004. 13(4): p. 28-33.
39.Braun, P., P. Wiltzius, Macroporous materials—electrochemically grown photonic crystals. Current opinion in colloid &; interface science, 2002. 7(1): p. 116-123.
40.Qiu, H., Y. Lu, and Z. Mai, Electrochromic writing and erasing on tungsten oxide films in air by scanning tunneling microscopy. Journal of applied physics, 2002. 91(1): p. 440-443.
41.Georg, A., et al., Switchable glazing with a large dynamic range in total solar energy transmittance (TSET). Solar energy, 1998. 62(3): p. 215-228.
42.Zayat, M., et al., Gasochromic effect in platinum-doped tungsten trioxide films prepared by the sol-gel method. Journal of sol-gel science and technology, 1998. 11(2): p. 161-168.
43.Georg, A., et al., Stability of gasochromic WO3 films. Solar energy materials and solar cells, 2000. 63(2): p. 165-176.
44.Georg, A., et al., The role of water in gasochromic WO3 films. Thin Solid Films, 2001. 384(2): p. 269-275.
45.Georg, A., et al., Mechanism of the gasochromic coloration of porous WO3 films. Solid State Ionics, 2000. 127(3): p. 319-328.
46.Georg, A., W. Graf, and V. Wittwer, The gasochromic colouration of sputtered WO3 films with a low water content. Electrochimica acta, 2001. 46(13).
47.Baetens, R., B.P. Jelle, and A. Gustavsen, Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Solar Energy Materials and Solar Cells, 2010. 94(2): p. 87-105.
48.Azens, A., et al., Electrochromic devices on polyester foil. Solid State Ionics, 2003. 165(1): p. 1-5.
49.Geffcken, W. and E. Berger, Verfahren zur Anderung des Reflexionsvermogens Optischer Glaser, Ger. Pat. 736(1939) 411.
50.Jirgensons, B. and M.E. Straumanis, Colloid Chemistry, McMillan Co. . New York (1962).
51.Brinker, C.J. and G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing. 1990: Academic Pr.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔