跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/18 05:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:卓聖耘
研究生(外文):Sheng-Yun Cho
論文名稱:機械通氣下呼吸機械特性改變 對迴圈函數與呼吸功之關聯影響
論文名稱(外文):The Effects of Respiratory Elastic Loadings on Loop Functions and WOB under Mechanical Ventilation
指導教授:林賢龍林賢龍引用關係
指導教授(外文):Shyan-Lung Lin
口試委員:林育德郭乃仁
口試委員(外文):Yue-Der LinNai Ren Guo
口試日期:2012-07-26
學位類別:碩士
校院名稱:逢甲大學
系所名稱:自動控制工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:84
中文關鍵詞:機械送氣迴圈函數呼吸機械特性呼吸功
外文關鍵詞:mechanical ventilationloop functionRespiratory mechanical propertieswork of breathing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
配有監測螢幕觀看呼吸波形與迴圈的呼吸器在臨床上已成為重要的儀器,而近幾年的研究中,幾乎都沒有參數設定與迴圈函數的相互關係。若能找出彼此的關係,未來臨床上的應用將會更多元。
本研究以呼吸器CMV送氣模式下,對人工肺進行機械通氣實驗,並研究迴圈函數的相對變化。實驗依照一般呼吸治療中針對病患特性所設定的範圍,系統性地調整了包括潮氣容積、呼吸頻率、尖峰氣流量等通氣參數。為了解呼吸治療過程中,吸吸機械特性改變時病患呼吸功的變化,在肺彈性負載實驗中進一步改變了人工肺的順應性,使用GM350與自製的人體呼吸控制模擬器,擷取了壓力、肺體積及氣流等呼吸瞬時波形,再產生呼吸迴圈函數。透過不同通氣參數與不同肺順應性下的機械通氣實驗,並研究其產生的呼吸迴圈函數變化情況,不僅對呼吸治療病患在機械通氣過程中,當呼吸生理變化時,其呼吸功的改變趨勢有進一步的認知,研究成果更可提供呼吸治療臨床上更多元的參考依據。
在結果中,得知了迴圈函數在正弦波與方波的送氣波形下彼此的不同,以及改變呼吸機械特性後迴圈函數間的變化。另外,模擬人體的實驗中,獲得了改變肺順應性後的比較結果,也在迴圈函數的變化了解與呼吸功之間的關連性。
Respirators with monitoring screens displaying breathing waves and loop functions had become important instruments in clinical applications. However, little research in recent years had investigated the relationship between parameter settings and loop functions. Finding the relationship between these two would provide a diverse selection of clinical applications in the future.
This investigation made use of continuous mandatory ventilation (CMV) devices to carry out mechanical ventilation on test lungs to investigate the relative changes of loop functions during ventilation. The experiment targeted parametric settings for general ventilation treatment for patients and systematically adjusted ventilation parameters including tidal volume, respiratory rate and peak flow. To understand how work of breathing would change with mechanical ventilation settings during ventilation treatment, test lung compliance was also changed in lung elasticity experiments. GM350 and a self-assembled human breathing control simulator were used to acquire instantaneous pressure, lung volume and ventilation curves to create ventilation loop functions. Mechanical ventilation tests under different ventilation parameters and compliance as well as investigations on the resulting changes of the breathing loop functions would provide further understanding of physiological changes of work of breathing in mechanical ventilation treatments. Investigation results could also provide additional reference for clinical ventilator treatments.
In the results, that the loop functions for sinusoidal and square waveform aspirated each other was different, and effect of changing the respiratory mechanical properties on loop function. In addition, the simulation of human experiments, to obtain the comparison results in lung compliance changing after, but also understand the connection between the loop functions and work of breathing.
中文摘要
Abstract
Contents
List of Figures
List of Tables
Chapter I Introduction
1.1 Research Purpose
1.2 Literature Review
1.2.1 Ventilation Setting
1.2.2 Loop Function
1.2.3 Respiratory Mechanics
1.2.4 Work of Breathing
1.3 Structure of Thesis
2.1 Mechanical Ventilation Synopsis
2.2 Mechanical Ventilation Settings
2.3 Common Ventilation Modes
2.4 Aspirated Waveform of Respirator
Chapter III Work of Breathing
3.1 Ventilator Control Indicators of Loop Function
3.1.1 Loop Function and WOB
3.2 Respiratory Mechanical Properties
3.2.1 Lung Mechanics
3.2.2 The Factors of Ventilation in Human Body
3.2.3 Compliance
3.2.4 The Lung Elasticity of Time Constant
3.2.5 Airway Resistance
3.2.6 Respiratory Failure
3.3 Work of Breathing
3.3.1 Method of Measuring WOB
3.3.2 Change in WOB of Mechanically Ventilated Patients
Chapter IV Method and Experiments
4.1 Experimental Platform of Mechanical Ventilation
4.1.1 Compressed Air Source
4.1.2 NPB7200
4.1.3 Artificial Test Lung
4.1.4 Beacon GM350 Graphics Monitor
4.1.5 Ventilator Monitoring
4.2 Experimental Procedure
4.2.1 Parameter Setting
4.2.2 Signal Acquisition
4.2.3 Loop Function
Chapter V Results and Discussion
5.1 Effect of Peak Flow Setting on Loop Functions
5.1.1 Sinusoidal Wave
5.1.1.1 Compliance 40 ml/cmH2O
5.1.1.2 Compliance 30 ml/cmH2O
5.1.2 Square Wave
5.1.2.1 Compliance 40 ml/cmH2O
5.1.2.2 Compliance 30 ml/cmH2O
5.2 The Effect of Airflow Waveform on Loop Functions
5.2.1 Compliance 40 ml/cmH2O
5.2.2 Compliance 30ml/cmH2O
5.3 The Effect of Lung Compliance on Loop Functions
5.3.1 Sinusoidal Waveform
5.3.2 Square Waveform
5.4 The Work of Breathing (WOB)
Chapter VI Conclusion
References
Appendix A Experimental Operating Procedures
Appendix B List of Loop Function
[1] 吳欣倫,人體呼吸控制模擬機構之人機介面整合與改良,逢甲大學碩士論文,2009。
[2] 謝宏偉,呼吸器最佳送氣波形模擬與迴圈函數分析,逢甲大學碩士論文,2010。
[3] C. L. Lafortuna, A. E. Minetti and P. Mognoni, “Inspiratory flow pattern in humans”, J. Appl. Physiol., pp. 1111-1119, 1984.
[4] E. D’Angelo, E. Calderini, A. Wolfler and M. Pecchiar, “Factors influencing the shape of the inspiratory flow”, Elsevier Respiration Physiol., pp. 211-19, 2001.
[5] K. Sohn, J. E. Holte, J. R. Phillips and Warren J. Warwick, “Modeled velocity of airflow in the airways during various respiratory patterns”, Proc. of the 26th Annual International Conference of IEEE EMBS, pp. 3925-3928, 2004.
[6] 古明煌,以呼吸功為指標的呼吸器回受控制,逢甲大學碩士論文,2002。
[7] 丁崑祥,PB7200呼吸器之最佳化正弦波送氣氣流參數設定研究,逢甲大學碩士論文,2005。
[8] D. Pevernagie, J. F. Masa, J. C. Meurice, R. Farré, O. Marrone, and D. Rodenstein, “Treatment of obstructive sleep-disordered breathing with positive airway pressure systems,” European Respiratory Review, 16, pp.125-131, 2007.
[9] F. Laghi, K. Karamchandani and M. J. Tobin, “Influence of Ventilator Settings in Determining Respiratory Frequency during Mechanical Ventilation,”American Journal of Respiratory and Critical Care Medicine, 160, pp.1766-1770,1999.
[10] 李金川,“呼吸波形的臨床應用”,中華民國呼吸照護簡訊,pp.32-59,2001年8月。
[11] B. Louis, K. Leroux, M. Boucherie, D. Isabey, V.G. Lanoir, B. Fauroux and F. Lofaso, “Pressure Stability with CPAP Devices: A Bench Evaluation” Sleep Medicine, pp.96-99, 2010.
[12]J.B.M. Vijay and J. Robert, Rapid Interpretation of Ventilator Waveforms, Prentice-Hall, 1999.
[13] R. P. Hämäläinen and A. A. Viljanen, “Modeling the respiratory airflow pattern by optimization criteria”, Biol. Cybernetics, pp. 143-149, 1978.
[14] 劉康棟,以動態呼吸機械特性為指標的機能耗能通氣裝置,逢甲大學碩士論文,2002。
[15]A.B. Otis, “Mechanics of Breathing in Man,”J. Appl Physiol, pp.592-607,1950.
[16] 周新、陳宇清,機械通氣波形分析與臨床應用,世界圖書出版公司,2002。
[17] 吳英黛,呼吸循環系統物理治療,第二版,金名圖書有限公司, 2000。
[18] 陳鏡昆,具最佳呼吸氣流波形之送器裝置與控制,逢甲大學碩士論文。2000。
[19] 黃俊豪,氣流量、壓力及容積等迴圈函數與呼吸特性參數之關係,逢甲大學碩士論文。2002。
[20] 姜壽德,呼吸系統生理學,第三版,環球書局,1994。
[21]馮俊瑋,以呼吸道阻抗和肺順應性為指標的機能耗能通氣裝置,逢甲大學碩士論文,2001。
[22]葉信樟,以呼吸功為指標之最佳化送氣裝置回授控制,逢甲大學碩士論文,2003。
[23]簡榮斌,主動式最佳化送氣裝置之研製,逢甲大學碩士論文,2003。
[24] 7200 series ventilator system Service Manual, PB PURITAN BENNETT, pp.3-14 - 3-15, October, 1993.
[25] 7200 series microprocessor ventilator Operator’s Manual, PB PURITAN BENNETT, pp.1-15 - 1-16, September, 1990.
[26] MODEL 3600i Single Lung Pneu View System Operations Manual, Michigan Instruments, Inc, pp.3.
[27] GM350 Operating Manual and Service Manual, Newport Medical Instruments, Inc, 2001.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top