跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/18 05:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高葆迪
研究生(外文):Pao Ti Kao
論文名稱:以類神經網路設計一類 空氣彈簧系統控制器
論文名稱(外文):Controller Design of a Class of Air-spring Systems Based on Artificial Neural Network
指導教授:洪三山
口試委員:張興政謝哲光
口試日期:2013-06-28
學位類別:碩士
校院名稱:逢甲大學
系所名稱:自動控制工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:76
中文關鍵詞:空氣彈簧類神經網路誤差倒傳遞
外文關鍵詞:Air-springArtificial Neural NetworksError Back Propagation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
本研究是為了改善現有空氣彈簧系統的操作性,透過類神經網路來設計系統之控制器,以提高駕駛者對於車身高度的掌握及控制。空氣彈簧的高度控制為駕駛者透過無線遙控器下達命令,來改變遙控器所顯示的壓力值,但此種控制方式及顯示方式,對駕駛者來說是非常不便及難以掌握車身高度。因此,本論文將透過類神經網路並結合誤差倒傳遞演算法,來建構空氣彈簧懸吊系統之控制器。透過類神經網路的設計與學習,我們可以考慮各種負載狀況下,針對空氣彈簧要上升或是下降之高度來進行調控。最後再把此控制器與無線遙控器結合,讓駕駛者能夠直接對高度下達控制的命令。因而駕駛者就能即時掌握目前車體底盤高度的狀態,甚且即時改變底盤高度來適應路況。
This study focuses on improving air-spring system performance. The system through the controller designed of artificial neural network to master and control height of vehicle from the driver. The air-spring height control was used wireless controller to change pressure values of monitor from the driver, but this way to control and display is very difficult to know height of vehicle for driver. Therefore, this study will use artificial neural networks combine error back propagation to construct air-spring suspension system controller. We can consider vehicle load of variety for adjusting height to rise or fall of air-spring, through the neural networks design and learn. Finally, this neural network controller combine wireless controller to let driver can control height of air-spring immediately. Therefore, the driver will immediately know current height of chassis, even real-time to adjust height of chassis to adapt road conditions.
摘 要 i
Abstract iii
目 錄 iv
圖目錄 vi
表目錄 ix
符號說明 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 國內外相關研究 2
1.3.1 空氣彈簧 3
1.3.2 機器學習 5
1.4 研究簡介 8
1.5 論文架構 9
第二章 研究理論分析 10
2.1 空氣彈簧之架構與原理 10
2.2 空氣彈簧相關特性 11
2.2.1 高度與彈性係數可調特性 11
2.2.2 電磁閥導通時間-彈簧高度特性曲線 19
2.3 類神經網路 22
2.3.1 類神經網路之類型 22
2.3.2 空氣彈簧類神經網路學習模型 24
第三章 程式規劃與設計 29
3.1 控制器設計 29
3.1.1 系統參數選擇 29
3.1.2 控制器程式之規劃 31
3.2 無線遙控器設計 34
3.2.1 無線遙控器程式之規劃 34
3.2.2 數據量測介面 36
第四章 實驗結果與分析 38
4.1 實驗平台 38
4.2 控制器訓練結果 39
4.3 實驗結果討論與分析 55
第五章 結論與未來展望 58
5.1 結論 58
5.2 未來研究之方向 59
參考文獻 60
[1]楊孟輯,基於RF技術實現具高度調整控制之氣壓式懸吊系統,逢甲大學自動控制工程學系,碩士論文,2009,6月。
[2]沈鈺翔,具多重保護機制之氣壓可調式懸吊系統,逢甲大學自動控制工程學系,碩士論文,2011,6月。
[3]G. Cybenko, ”Approximation by superpositions of a sigmoidal function,” Mathematics of Control, Signals and Systems, Vol. 2, No. 4, pp. 303-314, 1989.
[4]S. Chen, S.A. Billings, P.M. Grant, “Non-linear system identification using neural networks,” International Journal of Control, Vol. 51, No. 6, pp. 1191-1214, 1990.
[5]K.S. Narendra, K. Parthasarathy, “Identification and control of dynamical systems using neural networks,” IEEE Transactions Neural Networks, Vol. 1, No. 1, pp. 4-27, March 1990.
[6]梅季軒,變係數彈簧之設計與控制,逢甲大學機械工程學系碩士班,碩士論文,2006年6月。
[7]H. Kim, H. Lee, “Height and leveling control of automotive air suspension system using sliding mode approach,” IEEE Transactions on Vehicular Technology, Vol.60, No. 5, pp. 2027-2041, June 2011.
[8]S. Wakui, “Incline compensation control using an air-spring type active isolated apparatus,” Precision Engineering, Vol. 27, No. 2, pp. 170-174, April 2003.
[9]D. Liu, H. Chen, R. Jiang, W. Liu, “Study of ride comfort of active suspension based on model reference neural network control system,” 2010 Sixth International Conference on Natural Computation (ICNC 2010), Vol. 4, pp. 1860-1864, Shandong, China, August 10-12, 2010.
[10]L. J. Fu, J. G. Cao, C. R. Liao, B. Chen, “Study on neural networks control algorithms for automotive adaptive suspension systems,” 2005 International Conference on Neural Networks and Brain(ICNN &; B 2005), Vol. 3, pp. 1795-1799, Beijing, China, October 13-15, 2005.
[11]R. Hampo, K. Marko, “Neural network architectures for active suspension control,” Neural Networks, 1991., IJCNN-91-Seattle International Joint Conference, Vol. 2, pp. 765-770, Seattle, United States, July 8-14, 1991.
[12]M. Nagai, A. Moran, Y. Tamura, S. Koizumi, “Identification and control of nonlinear active pneumatic suspension for railway vehicles, using neural networks,” Control Engineering Practice, Vol. 5, No. 8, pp. 1137-1144, August 1997.
[13]I. Eski, S. Yıldırım, “Vibration control of vehicle active suspension system using a new robust neural network control system,” Simulation Modelling Practice and Theory, Vol. 17, No. 5, pp. 778-793, May 2009.
[14]G. Quaglia, M. Sorli, “Air suspension dimensionless analysis and design procedure,” Vehicle System Dynamics, Vol. 35, No. 6, pp. 443 - 475, 2001.
[15]K. Shimozawa, T. Tohtake, “An air spring model with non-linear damping for vertical motion,” QR of RTRI, Vol. 49, No. 4, pp. 209-214, November, 2008.
[16]Z. Mingjun, L. Yi, “Study on influence of capsule shape on nonlinear stiffness characteristics of air spring,” 2010 International Conference on Mechanic Automation and Control Engineering, pp. 5752-5755, Wuhan, China, June 26-28, 2010.
[17]P. Pelz, J. Buttenbender, “The dynamic stiffness of an air-spring,” ISMA2004 International Conference on Noise &; Vibration Engineering, September 20-22, 2004.
[18]國家度量衡標準實驗室,取自:http://www.nml.org.tw/,2013,5月。
[19]張斐章,張麗秋,黃浩倫,類神經網路:理論與實務,東華書局,2003,9月。
[20]J. G. Hsieh, J. H. Jeng, Y. L. Lin, Pathways to Machine Learning and Soft Computing, September 2013. (unpublished notes)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top