(18.204.2.190) 您好!臺灣時間:2021/04/22 06:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉真巧
論文名稱:藉由機械球磨法製備錫在奈米侷限下之熔化行為研究
論文名稱(外文):Investigation of the Melting Behavior of Tin Nano-Confined by Mechanical Alloying
指導教授:孫佩鈴
口試委員:林昆明孫道中
口試日期:2013-06-07
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:142
中文關鍵詞:奈米侷限機械球磨法熔點
相關次數:
  • 被引用被引用:3
  • 點閱點閱:220
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
在奈米尺寸下,許多材料的物理與化學特性與傳統大尺寸完全不同,如熔點溫度的改變。在近幾年來,奈米材料的研究引起許多專家學者的興趣,但是此方面的研究均以具自由表面之奈米粒子為主。而本研究主要為探討受侷限之奈米材料之熔點變化,奈米侷限不同於具自由表面之奈米粒子,也非存在於基材表面之量子點,而是奈米材料所有體積完全被侷限於母材內。
本研究是利用機械球磨法均勻混合鋅及二氧化錫粉末,使粉末細化,並藉由粉末反應產生的內還原(internal reduction)方式得到奈米尺寸錫顆粒被包覆於氧化鋅的基地中。
實驗結果顯示,在不同鋅與二氧化錫粉末克重比之下,由於組成成分之不同,便造成熔點溫度的差異。當SnO2與Zn粉末的克重比為1:1時,隨著球磨時間的增加,吸熱峰產生之起始溫度有下降的趨勢,此結果與XRD結果計算出錫顆粒尺寸隨球磨時間增加而下降相符合。當SnO2與Zn粉末的克重比為2.2:1.8時, Sn的熔點溫度皆在232.3℃左右,除了球磨5小時的溫度較低,約為212.9℃。當SnO2與Zn粉末的克重比為1:3時,實驗結果為隨著球磨時間的增加,奈米錫顆粒之熔點溫度由187.5℃降至184.8℃,此XRD結果與計算出錫顆粒尺寸隨球磨時間增加而下降相符合。而經過爐管模擬之計算出的奈米錫顆粒之晶粒尺寸卻隨著球磨時間增加,其尺寸大小也隨之增大。當SnO2與Zn粉末的克重比為1:3(碳化鎢球磨罐)時,實驗結果顯示隨著球磨時間的增加,奈米錫顆粒之熔點溫度由178.9℃升高至185.6℃,’這與XRD結果所計算出的奈米錫顆粒之晶粒尺寸隨球磨時間增加之現象相符合。此外,經由使用碳化鎢球磨罐的結果,可證實鋅不會與工具鋼球磨罐起反應。

關鍵字:奈米侷限、機械球磨法、熔點、錫
It has been reported that many physical and chemical properties of nano-sized materials are completely differentfrom the conventional large-sized materials such as melting temperature. In recent years, nano-materials have drawn much attention. However, the majority of the studies have been focused on the nano free particles. In this study, melting behavior of confined nano-materials is discussed. Nano-confined is different from free standing nano-particles, or quantum dots on the substrate surface. It means that nano-materials are entirely confined and isolated in a non-reacting matrix.
In this work, mechanical milling was used to fabricate nano-confined tin in zinc oxide matrix. Different zinc and tin dioxide powder fractions were chosen and ball milled. The powders were gradually refined by mechanical milling. The refined tin dioxide particles experienced internal reduction, in which tin dioxide was reduced to tin while zinc was oxidized to zinc oxide. Consequently, the nano-confined tin in zinc oxide or zinc matrix can be obtained.
The experimental results indicate that the variation of powder fractions can alter the melting behavior. When the powder weight ratio of SnO2 to Zn is 1:1, it shows a decrease of the onset of melting temperature with increasing milling time. These results are consistent with the particle sizes calculated based on the XRD data, in which a decrease of particle size with increasing milling time. When the powder ratio of SnO2 to Zn is changed to 2.2:1.8, the onset melting point of Sn is about 232.3oC. As the powder ratio of SnO2 to Zn is 1:3, the melting temperatures of tin nanoparticles are reduced from 187.5oC to 184.8oC. These results are also consistent with the particle sizes calculated based on the XRD data. After DSC simulated for one heating and cooling cycle, the particle sizes calculated based on the XRD data increase with increasing milling time. When the powder weight ratio of SnO2 to Zn is 1:3 (in tungsten carbide milling vial), the experimental results of the melting temperatures of tin nanoparticles increase from 178.9℃ to 185.6℃, and these results are also consistent with the particle sizes calculatedbased on the XRD data . According to the results of tungsten carbide vial, it can be confirmed that no contamination of iron in zinc occurred.

Keywords: Nanoconfined; Mechanical milling; Melting point; Tin
中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅳ
表目錄 Ⅶ
圖目錄 Ⅸ

第一章 前言 1
第二章 文獻回顧 3
2.1奈米金屬材料之物理特性 3
2.1.1 奈米材料簡介 3
2.1.2 奈米材料的特殊效應 5
2.1.3常見的奈米材料製備相關技術 5
2.1.4奈米材料的應用 8
2.2 成核理論 8
2.2.1 均質成核 9
2.2.2 異質成核 9
2.3 奈米材料之熔化行為 10
2.4 機械合金法 14
2.4.1 球磨機類型 19
2.4.2機械合金法對參數的影響 20
2.4.2.1球磨轉速與時間 20
2.4.2.2球粉比(Ball powder ratio, BPR) 20
2.4.2.3球磨工具與球磨氣氛 21
2.4.2.4表面活性劑 22
2.4.2.5球磨溫度 22
2.5 球磨錫之熔化行為 24
2.6 奈米侷限的定義 26
2.7 實驗機制 27
第三章 實驗步驟與方法 29
3.1機械合金法製備奈米錫 29
3.2材料性質分析 31
3.2.1 X-ray 繞射分析 32
3.2.2掃描式電子顯微鏡 (Scanning Electron Microscope, SEM)
33
3.2.3調幅式示差掃描分析儀(Modulated Differential Scanning
Calorimetry, DSC) 34
3.2.4 穿透式電子顯微鏡(Transmission Electron Microscope,
TEM) 35
第四章 結果與討論 38
4.1 (4N) 2g SnO2+2g Zn 系統 41
4.1.1 X-ray 繞射分析 43
4.1.2表面形貌與顯微結構觀察 52
4.1.3 DSC分析 62
4.2 (4N) 2.2g SnO2+1.8g Zn 系統 69
4.2.1 X光繞射分析 69
4.2.2 表面形貌觀察與顯微結構分析 73
4.2.3 DSC分析 76
4.3 (4N) 1g SnO2+3g Zn 系統 80
4.3.1 X光繞射分析 80
4.3.2 表面形貌觀察與顯微結構分析 84
4.3.3 DSC分析 93
4.4 (4N) 1g SnO2+3g Zn 系統(碳化鎢球磨罐) 97
4.4.1 X光繞射分析 97
4.4.2 表面形貌觀察與顯微結構分析 101
4.4.3 DSC分析 111
第五章 結論 115
參考文獻 118
【1】Han, Z. H. , Yang, B. , Qi, Y. , Cumings, J. , “Synthesis of low-melting-point metallic nanoparticles with an ultrasonic nanoemulsion method” , Ultrasonics 51 (2011) 485–488

【2】邱冠廸,金銀雙金屬奈米粒子光性質及相變行為探討,國立台灣
科技大學材料科學與工程學系研究所碩士論文 (2011)

【3】Patil, S. and Matei, G. and Oral, A. and Hoffmann, P. M., “Solid or Liquid? Solidification of a Nanoconfined Liquid under Nonequilibrium Conditions”, Langmuir, 22 (2006) 6485

【4】Qiao, Yu and Kong, Xinguo and Chakravarthula , Srinivas S., “An analysis of aggregate response of confined liquids in nanoenvironment”, J. Math. Chem., 37 (2005) 93-99

【5】馬遠榮,低維奈米材料,科學發展月刊,第382期,(2004)72-75

【6】郭正次、朝春光,奈米結構材料科學,全華科技圖書股份有限公司(2004)

【7】魏碧玉,奈米材料在光學上的應用及其製造法,工業材料,第153期,(1990)113-123

【8】伊邦躍, 奈米時代, 五南出版社 (2002).

【9】吳思翰,金屬及金屬核殼型複合奈米粒子之製備,國立成功大學化學工程學系博士論文 (2004)

【10】彭子峻,奈米級[Fe3O4]MgO 於地下水環境中與三釙乙烯之反應行為探討,國立中山大學環境工程研究所碩士論文 (2008)
【11】馬振基, 奈米材料科技原理與應用, 全華科技圖書 (2003)

【12】廖敏宏,磁性奈米載體在生物觸媒和生化分離之應用,國立成功 大學化學工程學系博士論文 (2002)

【13】莊萬發,超微粒子理論應用,復漢出版社 (1995)

【14】工研院工業材料研究所,材料奈米科技專刊,台北:經濟部技術處 (2001)

【15】張立德,奈米材料,五南圖書出版股份有限公司(2002)

【16】G. Schmid and B. Corain, “Nanoparticulated Gold: Syntheses, Structures, Electronics, and Reactivities”, Eur. J. Inorg. Chem. (2003) 3081-3098

【17】蘇品書,超微粒子材料技術,復漢出版社 (1989)

【18】范光照、黃漢邦、陳炳煇、張所鋐、顏色鈺,奈米工程概論,普林斯頓國際有限公司 (2003)

【19】丁秉鈞,奈米材料,機械工業出版社 (2004)

【20】J. S. Benjamin and T. E. Volin, “The Mechanism of Mechanical Alloying”, Metal Trans, 5 (1974) 1923-1928.

【21】C. Suryanarayana, “Mechanical alloying and milling”, Progress in Materials Science, Vol.46(2001)

【22】P. Y. Lee, and C. C. Koch, “Formation of amorphous Ni‐Zr alloys by mechanical alloying of mixtures of the intermetallic compounds Ni11Zr9 and NiZr2” Applied Physics Letters, 50(1987)1578.

【23】T.B. Massalski, H. Okamoto, P.R. Sabramamian, and L. Lacprzak “Binary Alloy Phase Diagrams”, ASM International, Materials Park, OH, 2nd ed. Vol.1, (1990) 64.

【24】盧俊元,添加 GeO2對 Li2O-Al2O3-SiO2 玻璃陶瓷的結晶 、熱膨脹性及透光率的影響,大同大學材料工程學系碩士論文 (2005)

【25】徐國華,機械化學合成Cu-S與CuFeS2粉體之結構研究,逢甲大學材料工程學系碩士論文 (2004)

【26】M. Perret, H. Mehrer and N.A. Stolwijk, “Sythesis of Amorphous Co-Nb Alloy Powders by Mechanical Alloying”, Detect and Diffusion Forum, vol.66-69, (1989)1343-1348

【27】P. Y. Lee and C. C. Koch, “The Formation and Thermal Stability of Amorphous Ni-Nb Alloy Powder Synthesized by Mechanical Alloying”, Journal of Non-Crystalline Solids, Vol.94, (1987)88

【28】A.D. Rud, A.M. Lakhnik, V.G. Ivanchenko, V.N. Uvarov and A.A. Shkola, “Hydrogen storage of the Mg–C composites”, Internatl Onal Journal of hydrogen energy , Vol.33, (2008)1310-1316

【29】W. T. Kim, D. L. Zhang and B. Cantor, “Nucleation of Solidification in Liquid Droplets,” Metall. Trans. A, Vol.22A, No.10, (1991)2487-501

【30】P. R. Couchman, and W. A. Jesser, “Comments on the melting mechanism for crystalline species”, Philosophical Magazine, Vol. 35, Issue 3, (1977)787-790

【31】H. W. Sheng, K. Lu and E. Ma, “Melting and freezing behavior of embedded nanoparticles in ball-milled Al+10wt%M (M = In, Sn, Bi, Cd, Pb) mixtures”, Acta mater. Vol. 46, No. 14, (1998)5195-205

【32】C. C. Koch, J. S. C. Jang and S. S. Gross, “The melting point depression of tin in mechanically milled tin and germanium powder mixtures”,Journal of Materials Research, Vol. 4, Issue 3, (1989)557 ­ 564

【33】D. L. Zhang, K. Chattopadhyay, B. Cantor, “Heterogeneous nucleation of solidification of cadmium particles embedded in an aluminium matrix”, Journal of Materials Science, Vol. 26, Issue 6, (1991)1531-1544
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔