跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/15 03:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張翌賢
研究生(外文):Yi-hsien Chang
論文名稱:添加銀對氧化鉍粉體於光反應特性研究
論文名稱(外文):Effect of Silver Addition on Photoreactive Properties of Bismuth Oxide
指導教授:陳錦毅陳錦毅引用關係
指導教授(外文):Chin-yi Chen
口試日期:2013-07-17
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:110
中文關鍵詞:熱裂解法噴霧熱解法氧化鉍光觸媒
外文關鍵詞:Spray pyrolysisThermal decompositionBismuth oxideSilverPhotocatalyst
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
  本研究利用硝酸鉍作為先驅物,以熱裂解法與噴霧熱解法製備氧化鉍粉體,並利用不同比例硝酸銀(0.5、1、2、3、4 at%)進行改質,探討在不同銀離子添加量對於粉體特性、光學特性與觸媒活性的影響。
研究結果顯示:
  以熱裂解法所製備之粉體為實心球型顆粒,顆粒均一性較佳,比表面積約2~5 (m2/g);以噴霧熱解法所製備之粉體呈現則為空心球、一次粒徑與二次粒徑結構,粒徑分佈較不平均,比表面積約4~6 (m2/g)。因銀屬微量添加,因此隨著銀的添加,粉體於晶格常數、晶粒大小、顆粒大小與比表面積皆無明顯的變化。
由XPS分析可得知於熱裂解法系統中銀以+1價存在於粉體,β-Bi2O3理論能隙約2.58 eV,Ag2O理論能隙約1.20 eV,因此熱裂解法所製備粉體能隙隨著銀的添加量越多而略減(由2.36 eV減少製2.29 eV)。於噴霧解法系統中,銀則以金屬態Ag0存在,因銀屬導體,因此在添加銀後,能隙也較純氧化鉍能隙小。在光觸媒活性方面,熱裂解法以銀添加量2 at%的觸媒效果最佳,對於甲基橙的降解率可達64 % (純氧化鉍粉體約42 %),而於噴霧熱解法中,在添加銀之後對於甲基橙的降解率皆低於所製備之純氧化鉍粉體。
Abstract
In the present study, bismuth oxide (Bi2O3) powders were prepared from bismuth nitrate (BiNH) by thermal decomposition (TD) and spray pyrolysis (SP) processes. Subsequently the Bi2O3 powder was doped with various amounts (0, 0.5, 1, 2, 3 and 4 at%) of silver (Ag) to modify its characteristics, photoreactive and catalytic properties.
The experimental results indicated that the TD-derived Bi2O3 powder possessed solid spherical particle, and the particle uniformity is better than that of SP-derived powder. The surface area is c.a. 25 m2/g. The SP-derived Bi2O3 powder possessed hollow spherical particle, primary and secondary particulate structures; and the surface area is c.a. 46 m2/g. Due to the small amount of silver addition, no obvious change in lattice constant, grain size, particle size and surface area of the resulting Bi2O3 powders can be found with the increase of Ag addition.
The XPS data show that the Ag+ ion can be found in the TD-derived Bi2O3 powder. In UV-Vis tests, the prepared Bi2O3 powder shows a red-shift phenomenon with the dope of silver. This may result from the small theoretical bandgap (1.20 eV) of silver oxide, resulting in the decrease in bandgap (from 2.36 to 2.29 eV) of the Bi2O3 with the silver addition. This trend can also be found in the SP-derived Bi2O3 powder, due to the doped silver exhibits a metallic phase in the Bi2O3 matrix.
The photocatalytic activity of Ag/Bi2O3 powders was evaluated by the photodegradation of the methyl orange under visible light irradiation as a function of Ag content. In the TD system, the photodegradation efficiency of Bi2O3 can be significantly improved from 42% to 64% with the incorporation of 2.0 at% Ag addition. In the SP system, metallic silver may disperse homogeneously in Bi2O3 particles, resulting in the formation of recombination centers. The photocatalytic efficiency of the SP-derived Ag/Bi2O3 powders thus decreases.
目錄
中文摘要 III
Abstract IV
目錄 VI
圖目錄 IX
表目錄 XIII
第一章、前言 1
第二章、文獻回顧 2
2.1 光觸媒 2
2.1.1 光觸媒的介紹與原理 2
2.1.2 光觸媒的光催化特性 3
2.1.3 光觸媒材料及改質方法 5
2.1.4 國內研究光觸媒之現況 13
2.2 氧化鉍 15
2.2.1 氧化鉍的結構與特性 15
2.2.2 氧化鉍的製備方法 17
2.2.3 氧化鉍的奈米結構 22
2.2.4氧化鉍受光催化之降解效能 26
2.2.5 國內研究氧化鉍之現況 28
第三章、實驗步驟 29
3.1 實驗動機與目的 29
3.2 觸媒粉體的製備 30
3.2.1 熱裂解法製備氧化鉍粉體 30
3.2.2 噴霧熱解法製備氧化鉍粉體 32
3.3 觸媒材料之特性分析 34
3.3.1 熱重分析 34
3.3.2 X光繞射分析 35
3.3.3 冷場發射掃描式電子顯微鏡表面形態分析 36
3.3.4 穿透式電子顯微鏡粉體結構分析 36
3.3.5 化學分析電子能譜儀 36
3.3.6 可見光-紫外光譜分析儀 37
3.3.7 高解析比表面積分析儀 37
3.4 光催化降解檢測 38
第四章、結果與討論 40
4.1 熱裂解熱處理前粉體之特性分析 40
4.1.1 TGA熱重分析 40
4.2 熱裂解法複合粉體之特性分析 41
4.2.1 XRD結晶結構分析 41
4.2.2 FESEM表面型態分析 43
4.2.3 HR-TEM微結構分析 47
4.2.4 XPS粉體成分分析 49
4.2.5 UV-Visible光學特性分析 55
4.2.6 BET分析 57
4.3 噴霧熱解複合粉體特性分析 58
4.3.1 XRD結晶結構分析 58
4.3.2 FESEM表面結構分析 60
4.3.3 HR-TEM微結構分析 64
4.3.4 XPS粉體成分分析 66
4.3.5 UV-Visible光學特性分析 71
4.3.6 BET分析 73
4.4 觸媒活性測試 74
4.5 製程比較 84
第五章、結論 88
第六章、未來方向 90
參考文獻 91
【1】M.A. Fox, M.T. Dulay, Chem. Rev. 93 (1993) 341.
【2】A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C: Photochem. Rev. 1 (2000) 1.
【3】J.C. Yu, J.G. Yu,W.K. Ho, Z.T. Jiang, L.Z. Zhang, Chem. Mater. 14 (2002) 3808.
【4】A. Cabot, A. Marsal, J. Arbiol, J.R. Morante, Sens. Actuators B 99 (2004) 74–89.
【5】K. Sardar, T.-T. Fang, T.-W. Yang, J. Am. Ceram. Soc. 90 (2007) 4033–4035.
【6】T.P. Gujar, V.R. Shinde, C.D. Lokhande, S.-H. Han, J. Power Sources 161 (2006) 1479–1485.
【7】A. Fujishima, and K. Honda, “Electrochemical photolysis of water at a semiconductor Electrode, ” Nature 37 (1972) 238.
【8】M. Gratzel,“Insight review articles:Photoelectrochemical cells”.

【9】L. Zhang, W. Wang, J. Yang, Z. Chen , W. Zhang, L. Zhou, S. Liu, “Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst,” Applied Catalysis A: General 308 (2006) 105–110.
【10】X. Yin, W. Que, Y. Liao, H. Xie, D. Fei, “Ag–TiO2 nanocomposites with improved photocatalytic properties prepared by a low temperature process in polyethylene glycol, Colloids and Surfaces A: Physicochem. Eng. Aspects 410 (2012) 153– 158.

【11】G. Zhu, W. Que, J. Zhang, “Synthesis and photocatalytic performance of Ag-loaded β-Bi2O3 microspheres under visible light irradiation,” J. Alloys and Compounds 509 (2011) 9479– 9486.
【12】S. A. Khan Leghari, S. Sajjad, F. Chen, J. Zhang, “ WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst,” Chemical Engineering Journal 166 (2011) 906–915.

【13】J.Cao, B.Xu, B.Luo, H.Lin, S.Chen, “Prepared, characterization and visible-light photocatalytic activity of AgI/AgCl/TiO2,” Appl. Surf. Sci. 257 (2011) 7983-7089.
【14】D. Robert, Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications, Catal. Today 122 (2007) 20-26.

【15】W.D. Wang, F.Q. Huang, X.P. Lin, J.H. Yang, Visible-light-responsive photocatalysts xBiOBr-(1−x)BiOI, Catal. Commun. 9 (2008) 8–12.

【16】Z. Zou, J. Ye, K. Sayama, H. Arakawa, “Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 (M = Mn, Fe, Co, Ni and Cu) photocatalysts, ” J. Photochemistry and Photobiology A: Chemistry 148 (2002) 65–69.
【17】J. Xie, X. Lu, M. Chen, G. Zhao, Y. Song, S. Lu, “The synthesis, characterization and photocatalytic activity of V(V), Pb(II), Ag(I) and Co(II)-doped Bi2O3, ” Dyes and Pigments 77 (2008) 43-47.

【18】Y. M. Wang, S. W. Liu, M. K. Lü, S. F. Wang, F. Gu, X. Z. Gai, X. P. Cui, J. Pan, “Preparation and photocatalytic properties of Zr4+-doped TiO2 nanocrystals.”, J. Molecular Catalysis A: Chemical 215 (2004) 137–142.
【19】林業騫,「銀鉭系波洛斯凱特型與二氧化鈦光觸媒用於二氧化碳光催化還原反應之效能-光觸媒物性和光學性質之鑑定及光催化活性之初步測定」,碩士論文,國立成功大學化學工程學系,2008.

【20】丘堂君,「以Sr、N改質TiO2光觸媒在可見光下處理1,2-二氯乙烷之研究」,碩士論文,國立成功大學環境工程學系,2009.

【21】韓履璋,「結合摻氮之氧化鈦與奈米銀製作UV-Visible全光譜光觸媒複合材料及其生醫抗菌應用」,碩士論文,逢甲大學生醫資訊暨生醫工程,2012.

【22】T. Takahashi, H. Iwahara, Y. Nagai, J. Appl. Electrothem.2 (1972) 97.

【23】T. Takahashi, H. Iwahara, Y. Nagai, “High oxide ion conducting in sintered Bi2O3 containing SrO2, CaO or La2O3,” J. Appl. Electrochem. 2 (1972) 97.
【24】P.Shuk, H.D.Wiemhofer, U.Guth, W.Gopel, M.Greenblatt, “Oxide ion conducting solid electrolytes based on Bi2O3,” Solid State Ionic 89 (1996) 179-196.
【25】P. Shuk, H.-D. Wiemhöfer, U. Guth, W. Gijpeld, M. Greenblatt, “Oxide ion conducting solid electrolytes based on Bi2O3,” Solid State Ionics 89 (1996) 179-196.

【26】L.G. Sillen, Ark. Kemi Mineral. Geol. 12A (1937) 1.
【27】H.A. Harwig, Z. Anorg. Allg. Chem. 444 (1978) 151.

【28】J. Z. Li, J. B. Zhong, J. Zeng, F. M. Feng, J. J. He, “Improved photocatalytic activity of dysprosium-doped Bi2O3 prepared by sol-gel method,” Materials Science in Semiconductor Processing.
【29】W. He, W. Qin, X. Wu, X. Ding, L. Chen, Z. Jiang, “The photocatalytic properties of bismuth oxide films prepared through the sol–gel method,” Thin Solid Films 515 (2007) 5362–5365.

【30】Y. Sun, W. Wang, L. Zhang, Z. Zhang, “Design and controllable synthesis of α-/γ-Bi2O3 homojunction with synergetic effect on photocatalytic activity,” Chemical Engineering Journal 211–212 (2012) 161–167.

【31】Z. Ai, Y. Huang, S. Lee, L. Zhang, “Monoclinic α-Bi2O3 photocatalyst for efficient removal of gaseous NO and HCHO under visible light irradiation,” J. Alloys and Compounds 509 (2011) 2044–2049.

【32】Y. Wang, Y. He, T. Li, J. Cai, M. Luo, L. Zhao, “Photocatalytic degradation of methylene blue on CaBi6O10/Bi2O3 composites under visible light,” Chemical Engineering Journal 189– 190 (2012) 473– 481.

【33】G. L. Messing, S. C. Zhang, and G. V. Jayanthi, “Ceramic Powder Synthesis by Spray Pyrolysis,” J. Am. Ceram. Soc 76 (1993)2707.

【34】O. Rico-Fuentes, E. Sa´nchez-Aguilera, C. Velasquez, R. Ortega-Alvarado, J.C. Alonso, A. Ortiz, “Characterization of spray deposited bismuth oxide thin films and their thermal conversion to bismuth silicate,” Thin Solid Films 478 (2005) 96– 102.
【35】W. Dong, C. Zhu, “Optical properties of surface-modified Bi2O3 nanoparticles,” J. Physics and Chemistry of Solids 64 (2003) 265–271.
【36】B. Yu, C. Zhu, F. Gan, “Optical nonlinearity of Bi2O3 nanoparticles studied by Z-scan technique, ” J. Appl. Phys. 82 (8) (1997) 4532–4537.

【37】S. Anandan, J. J. Wu, “Microwave assisted rapid synthesis of Bi2O3 short nanorods,” Materials Letters 63 (2009) 2387–2389.
【38】H. W. Kim, J. W. Lee, S. H. Shim, “Study of Bi2O3 nanorods grown using the MOCVD technique,” Sensors and Actuators B 126 (2007) 306–310.
【39】C. Wu, L. Shen, Q. Huang, Y. C. Zhang, “Hydrothermal synthesis and characterization of Bi2O3 nanowires,” Materials Letters 65 (2011) 1134–1136.
【40】C. Wang, C. Shao, L. Wang, L. Zhang, X. Li, Y. Liu, “Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers,” J. Colloid and Interface Science 333 (2009) 242–248.
【41】P. Xiao, L. Zhu, Y. Zhu, Y. Qian, “Selective hydrothermal synthesis of BiOBr microflowers and Bi2O3 shuttles withconcavesurfaces,” J. Solid State Chemistry 184 (2011) 1459–1464.

【42】A. Zhang, J. Zhang, “Synthesis and characterization of Ag/BiVO4 composite photocatalyst,” Applied Surface Science 256 (2010) 3224–3227.

【43】Y. Wang, Y. He, T. Li, J. Cai, M. Luo, L. Zhao, “Photocatalytic degradation of methylene blue on CaBi6O10/Bi2O3 composites under visible light,” Chemical Engineering Journal 189– 190 (2012) 473– 481.

【44】A. Hameed, V. Gombac, T. Montini, L. Felisari, P. Fornasiero, “Photocatalytic activity of zinc modified Bi2O3,” Chemical Physics Letters 483 (2009) 254–261.

【45】S. Obregón Alfaro, A. Martínez-de la Cruz, “Synthesis, characterization and visible-light photocatalytic properties of Bi2WO6 and Bi2W2O9 obtained by co-precipitation method,” Applied Catalysis A: General 383 (2010) 128–133.

【46】林宗儒,「氧化鈰、氧化鉍、氧化鐵三種晶種層對鐵酸鉍鐵電薄膜之影響」,碩士論文,國立清華大學材料科學工程學系,2012.

【47】張耀文,「摻雜異價離子(Y3+, Nb5+)氧化鉍基固態氧化物電解質電性與微結構之研究」,碩士論文,國立臺北科技大學材料科學與工程研究所,2011.

【48】M. Yin, S. O’Brien, “Synthesis of Monodisperse Nanocrystals of Manganese Oxides,” J. AM. CHEM. SOC.,125 (2003)10180-10181.
【49】Z. Bian, J. Zhu, S. Wang, Y. Cao, X. Qian, and H. Li, “Self-Assembly of Active Bi2O3/TiO2 Visible Photocatalyst with Ordered Mesoporous Structure and Highly Crystallized Anatase,” J. Phys. Chem. C,112 (2008), 6258-6262.
【50】L. Jing , J. Wang, Y. Qu, Y. Luan, “Effects of surface-modification with Bi2O3 on the thermal stability and photoinduced charge property of nanocrystalline anatase TiO2 and its enhanced photocatalytic activity,” Applied Surface Science 256 (2009) 657–663.
【51】H. L. Xing, S. T. GAO, G. C. XU, J. F. ZHAO, N. DOU, P. P. BEI, G. HONG, “Synthesis and Characterization of Nanosilver/PAAEM Composites via Emulsilfier-Free Emulsion Polymerization Ultrasonically, ” CHINESE JOURNAL OF INORGANIC CHEMISTRY, VOL.28, NO.10, 2103-2108.
【52】V. Fruth, M. Popa, J. Calderon-Moreno, E. Tenea, M. Anastasescu, P.Osiceanu, E. Anghel, L. Predoana, B. Malic, M. Zaharescu, “Perovskite type nanopowders and thin films obtained by chemical methods, ” Processing and Application of Ceramics 4 [3] (2010) 167–182.
【53】D. Y. Zemlyanov, A. Hornung, G. Weinberg, U. Wild, and R. Schlogl, “Interaction of Silver with a NO/O2 Mixture: A Combined X-ray Photoelectron Spectroscopy and Scanning Electron Microscopy Study, ” Langmuir 14 (1998) 3242-3248.
【54】H.F. Cheng, B.B. Huang, J.B. Lu, Z.Y. Wang, B. Xu, X.Y. Qin, X.Y. Zhang, Y. Dai, “Synergistic effect of crystal and electronic structures on the visible-light-driven photocatalytic performances of Bi2O3 polymorphs, ” Phys.Chem. Chem. Phys. 12 (2010) 15468.
【55】B. S, S. G, S. J, S. A. “The characterization of activated carbons with oxygen and nitrogen surface groups., ” Carbon 35(12) (1997) 1799–810.
【56】B. Xin, L. Jing, Z. Ren, B. Wang, and H. Fu, “Effects of Simultaneously Doped and Deposited Ag on the Photocatalytic Activity and Surface States of TiO2, ” J. Phys. Chem. B 109 ( 2005) 2805-2809.
【57】Wonyong. Choi, A. Termin, and M. R. Hoffmann, “The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics, ” J. Phys. Chem. 98 (1994) 13669-13679.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top