(34.239.150.57) 您好!臺灣時間:2021/04/18 23:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:夏承賢
研究生(外文):Chen-Hsien Hsia
論文名稱:射頻磁控濺鍍摻氮二氧化鈦薄膜負極材料之研究
論文名稱(外文):Radio frequency magnetron sputter deposited TiOxNy thin film anodes
指導教授:邱國峰邱國峰引用關係
指導教授(外文):Kuo-Feng Chiu
口試委員:呂晃志唐宏怡
口試委員(外文):Hoang-Leu LeuHong-Yi Tang
口試日期:2013-06-14
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:120
中文關鍵詞:二氧化鈦薄膜電池鋰離子電池負極材料氮摻雜
外文關鍵詞:Titanium dioxideThin-film batterylithium ion batteryanode materialnitrogen doped
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
對於目前各式各樣的可攜式電子產品諸如數位相機、智慧型手機、筆記型電腦之電源供應,鋰離子二次電池已是主流的選擇。而隨著科技產品的趨勢趨於體積小、重量輕的理念,電池微型化演變為不得不發展的趨勢。開發更小、更輕、更薄、能量密度更高的電池乃成為業界及學術界同追求的目標。
本研究選擇具有高開發潛力之TiO2二氧化鈦作為薄膜電池之負極材料,其具有低成本、高環境親合力、高工作電位、以及能夠於充放電過程中維持優良結構穩定性,故選用之。而本實驗為藉由射頻磁控濺鍍系統在低溫下沉積二氧化鈦薄膜,在濺鍍工作中控制氬氣與氧氣比例下,成功製備出銳鈦礦結晶型二氧化鈦薄膜,隨後,進一步控制氧氣與氮氣比例,探討對薄膜結構之影響,觀察其結構與形貌變化,並將薄膜沉積於SS304不銹鋼上後組裝成鈕扣型電池,對其電化學行為與充放電特性進行詳細測試。
研究結果發現,於濺鍍製程中加入氮氣作為反應性氣氛所沉積之薄膜晶粒明顯變小,此現象有效提升電極與電解質接觸面積、縮短鋰離子與電子擴散路徑,能有效改善其電化學性質,電化學分析結果顯示TiOxNy薄膜在3.35 A/g (10 C-rate)放電電容量比未摻氮二氧化鈦薄膜高出1.5倍,而循環壽命的電容維持率表現也比未摻氮大幅提升,得知摻雜氮有效增加導電性,提升快速充放電能力以及循環充放電之效能。
Lithium ion secondary batteries have been the power supplies of varies portable electronic devices, such as digital cameras, smart phones, notebooks, and computers. However, the battery miniaturization of batteries has also been the trend for the development of new generation batteries.Smaller, lighter, thinner, and higher energy density batteries are always demanded by the industries.
In this research, Titanium dioxide thin films are chosen as the anode materials. Nitrogen doped TiO2 thin films were deposited by introduced nitrogen gas during deposition. The resulted TiOxNy thin films with various nitrogen contents have been characterized. The TiO2 thin films can be effectively doped with nitrogen by reactive sputtering, and the grain sizes become smaller as the nitrogen contents of the TiOxNy thin films increase. Therefore, the Li ion diffusion length is decreased and the interface area between electrode/electrolyte was greater. Electrochemical characteristics of TiOxNy thin films as anodes for lithium ion batteries have been investigated. The results show that the discharge capacity of TiOxNy thin films at 3.35 A/g (10 C-rate) high current density is one and a half times higher than TiO2 thin films under the optimal condition. The capacity retention was significantly improved. The results have demonstrated that the nitrogen doping can effective enhance the performance of TiOxNy thin films.
目錄
中文摘要 ........................................................................................ I
Abstract ...................................................................................... III
目錄 .............................................................................................. IV
圖目錄 ........................................................................................ VIII
表目錄 .......................................................................................... XI
第一章、研究動機 ..................................................................... 1
1-1 研究動機 .................................................................................. 1
第二章、文獻回顧 ..................................................................... 4
2-1 鋰離子二次電池的源起與簡介 .............................................. 4
2-1-1 電池的演進歷史 ............................................................ 4
2-1-2 鋰離子電池的工作原理 ................................................ 8
2-1-3 薄膜鋰離子電池介紹 .................................................. 10
2-1-4 負極材料介紹 .............................................................. 14
2-2 二氧化鈦負極材料 ................................................................ 20
2-2-1 二氧化鈦負極介紹 ...................................................... 20
2-2-2銳鈦礦(Anatase)二氧化鈦負極 .................................... 21
2-2-3金紅石(Rutile)二氧化鈦負極 ....................................... 23
2-2-4 TiO2(B)負極 ............................................................... 24
2-2-5 二氧化鈦(TiO2)負極材料之研究現況 ........................ 25
2-3 氮摻雜二氧化鈦 .................................................................... 27
第三章、實驗方法與分析鑑定 ............................................ 41
3-1 實驗材料與設備 .................................................................... 41
3-1-1 實驗材料 ...................................................................... 41
3-1-2 實驗設備 ...................................................................... 42
3-2 實驗流程 ................................................................................ 43
3-2-1 射頻磁控濺鍍製程 ...................................................... 43
3-2-2 基材溫度之量測 .......................................................... 45
3-2-3 二氧化鈦薄膜製備 ...................................................... 45
3-2-4 摻氮二氧化鈦薄膜製備 .............................................. 45
3-3 材料分析與鑑定(XRD)................................................... 46
3-3-2 冷場發射式掃描式電子顯微鏡(FE-SEM) ................. 47
3-3-3 薄膜厚度量測 .............................................................. 48
3-3-4 X-ray 光電子能譜儀(XPS) ....................................... 49
3-3-5 傅立葉轉換紅外線光譜儀(FTIR) ............................... 50
3-3-6 界面接觸電阻量測 ...................................................... 51
3-4 電池元件組裝及電化學特性分析 ........................................ 51
3-4-1 鈕扣型電池之組裝 ...................................................... 51
3-4-2 循環伏安法 .................................................................. 52
3-4-3 充放電測試 .................................................................. 53
3-5 交流阻抗分析 ........................................................................ 54
3-5-1 交流阻抗之原理 .......................................................... 54
3-5-2 交流阻抗圖譜與等效電路圖的建立 .......................... 57
3-5-3 擴散阻抗 ...................................................................... 59
第四章、實驗結果與討論 ..................................................... 65
4-1 基座溫度量測 ........................................................................ 65
4-2 二氧化鈦負極薄膜 ................................................................ 66
4-2-1 晶體結構 ...................................................................... 66
4-2-2 微結構與表面形貌 ...................................................... 67
4-2-3 充放電測試 .................................................................. 68
4-3 摻氮二氧化鈦負極薄膜 ........................................................ 69
4-3-1 晶體結構 ...................................................................... 69
4-3-2 微結構與表面形貌 ...................................................... 70
4-3-3 膜厚量測 ...................................................................... 71
4-3-4 薄膜組成成分分析 ...................................................... 72
4-3-5 界面接觸電阻測試 ...................................................... 75
4-4 半電池電化學分析 ................................................................ 76
4-4-1 氧化還原反應 .............................................................. 76
4-4-2 充放電測試 .................................................................. 77
4-4-3 循環壽命測試 .............................................................. 80
4-4-4 快速充放電測試 .......................................................... 82
4-5 交流阻抗分析 ........................................................................ 83
第五章、結論 .......................................................................... 111
參考文獻 ................................................................................... 113
參考文獻
【1】 J. B. Bates, N. J. Dundney, B. Neudecker, A. Ueda, C. D. Evans, Thin-film lithium and lithium-ion batteries, Solid State Ion., 135, 33 (2000).
【2】 P. Birke, W. F. Chu, W. Weppner, Materials for lithium thin-film batteries for application in silicon technology, Solid State Ion., 93, 1 (1997).
【3】 J. R. Dahn, A. K. Sleigh, Shi Hang, B. M. Way, W. J. Weydanz, J. N. Reimers, Q. Zhong, U. von Sacken, Lithium batteries, New materials, Developments and Perspectives, Industrial Chemistry Library, Vol.5 (ed. Pistoia.G.), New York (1994).
【4】 J. H. Ahn, G. X. Wang, J. Yao, H. K. Liu, S. X. Dou, Tin-based composite materials as anode materials for Li-ion batteries, J. Power Source, 45, 119 (2003).
【5】 H. Park, T. Song, H. Han, A. Devadoss, J. Yuh, C. Choi, U. Paik. SnO2 encapsulated TiO2 hollow nanofibers as anode material for lithium ion batteries, Electrochem. Commun., 22, 81 (2012).
【6】 C. Jiang, M. Wei, Z. Qi, T. Kudo, I. Honma, H. Zhou, Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode, J. Power Source, 166, 239 (2007).
【7】 Y. M. Lin, P. R. Abel, D. W. Flaherty, J. Wu, K. J. Stevenson, A. Heller, C. B. Mullins, Morphology Dependence of the Lithium Storage Capability and Rate Performance of Amorphous TiO2 Electrodes, J. Phys. Chem. C, 115, 2585 (2011).
【8】 S. K. Panda, Y. Yoon, H. S. Jung, W. S. Yoon, H. Shin, Nanoscale size effect of titania (anatase) nanotubes with uniform wall thickness as high performance anode for lithium-ion secondary battery, J. Power Sources, 204, 162 (2012).
【9】 B. Wang, J. Cheng, Y. Wu, Titania nanotube synthesized by a facile, scalable and cheap hydrolysis method for reversible lithium-ion batteries, J. Alloy. Compd., 527, 132 (2012).
【10】 V. Subramanian, A. Karki, K. I. Gnanasekar, F. P. Eddy, B. Rambabu, Nanocrystalline TiO2 (anatase) for Li-ion batteries, J. Power Souces, 159, 186 (2006).
【11】 F. O. Gregorio, I. Hanzu, T. Djenizian, P. Lavela, J. L. Tirado, P. Knauth, Alternative Li-Ion Battery Electrode Based on Self-Organized Titania Nanotubes, Chem. Mater., 21, 63 (2009).
【12】 J. Hajek., French Patent, 8, 10 (1994).
【13】 J. R. Owen, Rechargeable lithium batteries, Chem. Soc. Rev., 26, 259 (1997).
【14】 工業技術研究院,小型二次電池市場與技術專輯,工業材料系列叢書7 (1996)。
【15】 M. Armand, D. W. Murphy, J. Broadhead, B. C. H. steele, Materials for advanced batteries, Plenum Press, New York, 145 (1980).
【16】 T. Nagaura, K. Tozawa, Lithium ion rechargeable battery, Prog. Batt. Solar Cells, 9, 209 (1990).
【17】 H. Qiao, Y. Wang, L. Xiao, L. Zhang, High lithium electroactivity of hierarchical porous rutile TiO2 nanorod microspheres, Electrochem. Commun., 10, 1280 (2008).
【18】 陳正倫,逢甲大學材料科學與工程學系碩士論文,基材效應誘發磷酸鋰鐵(LiFePO4)薄膜顯微結構演化之研究 (2009)。
【19】 J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck, Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries, J. Power Sources, 43, 103 (1993).
【20】 J. B. Bates, N. J. Dudney, Thin Film Rechargeable Lithium Batteries for Implantable Device, ASAIO Journal, 43, M644 (1997).
【21】 X. Yu, J. B. Bates, G. E. Jellison, Jr., F. X. Hart, A Stable Thin-Film Lithium Electrolyte: Lithium Phosphorus Oxynitride, J. Electrochem. Soc., 144, 524 (1997).
【22】 Infinite Power Solutions http://www.infinitepowersolutions.com/products/thinergy.html
【23】 黃可龍、王兆翔、劉素琴,“鋰離子電池原理與關鍵技術”,化學工業出版社,chapter 4 (2009)。 【24】 F. M. Courtel, S. Niketic, D. Duguay, Y. Abu-Lebdeh, I. avidson, Water-soluble binders for MCMB carbon anodes for lithium-ion
batteries, J. Power Sources, 196, 2128 (2011). 【25】 J. Chen, L. Yang, Y. Tang, Electrochemical lithium storage of TiO2 hollow microspheres assembled by nanotubes, J. Power Sources, 195, 6893 (2010). 【26】 Y. S. Hu, L. Kienle, Y. G. Guo, Maier, High Lithium Electroactivity of Nanometer-Sized Rutile TiO2, J. Adv. Mater., 18, 1421 (2006). 【27】 J. B. Goodenough, Y. Kim, Challenges for Rechargeable Li Batteries, Chem. Mater., 22, 587 (2009). 【28】 H. G. Jung, S. W. Oh, J. Ce, N. Jayaprakash, Y. K. Sun, Mesoporous TiO2 nano networks: Anode for high power lithium battery applications, Electrochem. Commun., 11, 756 (2009). 【29】 H. Qiao, Y. Wang, L. Xiao, L. Zhang, High lithium electroactivity of hierarchical porous rutile TiO2 nanorod microspheres, Electrochem. Commun., 10, 1280 (2008). 【30】 M. Inaba, Y. Oba, F. Niina, Y. Murota, Y. Ogino, A. Tasaka, K. Hirota, TiO2(B) as a promising high potential negative electrode for large-size lithium-ion batteries, J. Power Sources, 189, 580 (2009). 【31】 S. Zhang, M. Ding, S. K. Xu, J. Allen, T. R. Jow, Understanding Solid Electrolyte Interface Film Formation on Graphite Electrodes, Electrochem. Solid-State Lett., 4, A206 (2001). 【32】 E. P. Roth, D. H. Doughty, J. Franklin, DSC investigation of exothermic reactions occurring at elevated temperatures in lithium-ion anodes containing PVDF-based binders, J. Power Sources, 134, 222 (2004). 【33】 X. P. Gao, Y. Lan, H. Y. Zhu, J. W. Liu, Y. P. Ge, F. Wu, D. Y. Song, Electrochemical Performance of Anatase Nanotubes Converted from Protonated Titanate Hydrate Nanotubes, Electrochem. Solid-State Lett., 8, A26 (2005). 【34】 J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles, J. Phys. Chem. C, 111, 14925 (2007).
【35】 黃可龍、王兆翔、劉素琴,“鋰離子電池原理與關鍵技術”,化學工業出版社,chapter 4 (2009).
【36】 X. Su, Q. Wu, X. Zhan, J. Wu, S. Wei, Z. Guo, Advanced titania nanostructures and composites for lithium ion battery, J. Mater. Sci., 47, 2519 (2012).
【37】 R. Marchand, L. Brohan, M. Tournoux, TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17, Mater. Res. Bull., 15, 1129 (1980).
【38】 S. J. Park, H. Kim, Y. J. Kim, H. Lee, Preparation of carbon-coated TiO2 nanostructures for lithium-ion batteries, Electrochim. Acta, 56, 5355 (2011).
【39】 蔡旻橋,國立清華大學材料科學與工程學系系博士論文,不同形貌氧化鈦相關材料-製備與應用,p.9-p.12 (2009). 【40】 L. Kavan, J. Rathousky, M. Gratzel, V. Shklover, A. Zukal, Surfactant-Templated TiO2 (Anatase): Characteristic Features of Lithium Insertion Electrochemistry in Organized Nanostructures, J. Phys. Chem. B, 104, 12012 (2000).
【41】 W. S. Oh, S. H. Park, Y. K. Sun, Hydrothermal synthesis of nano-sized anatase TiO2 powders for lithium secondary anode materials, J. Power Sources, 161, 1314 (2006).
【42】 D. H. Kim, H. W. Ryu, J. H. Moon, J. Kim, Effect of ultrasonic treatment and temperature on nanocrystalline TiO2, J. Power Sources, 163, 196 (2006).
【43】 X. Gao, H. Zhu, G. Pan, S. Ye, I. Lan, F. Wu, D. Song, Preparation and Electrochemical Characterization of Anatase Nanorods for Lithium-Inserting Electrode Material, J. Phys. Chem. B, 108, 2868 (2004).
【44】 H. Zhang, G. R. Li, L.P. An, T.Y. Yan, X. P. Gao, H.Y. Zhu, Electrochemical Lithium Storage of Titanate and Titania Nanotubes and Nanorods, J. Phys. Chem. C, 111, 6143 (2007).
【45】 Y. Wang, M. Wu, W. F. Zhang, Preparation and electrochemical characterization of TiO2 nanowires as an electrode material for lithium-ion batteries, Electrochim. Acta, 53, 7863 (2008). 【46】 H. Zhang, G. R. Li, L. P. An, T.Y. Yan, X. P. Gao, H.Y. Zhu, Electrochemical Lithium Storage of Titanate and Titania Nanotubes and Nanorods, J. Phys. Chem. C, 111, 6143 (2007).
【47】 J. Xu, C. Jia, B. Cao, W. F. Zhang, Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries, Electrochim. Acta, 52, 8044 (2007).
【48】 Y. Zhou, L. Cao, F. Zhang, B. He, H. Li, Lithium Insertion into TiO2 Nanotube Prepared by the Hydrothermal Process, J. Electrochem. Soc., 150, A1246 (2003).

【49】 K. Wang, M. Wei, M. A. Morris, H. Zhou, J.D. Holmes, Mesoporous Titania Nanotubes: Their Preparation and Application as Electrode Materials for Rechargeable Lithium Batteries, Adv. Mater., 19, 3016 (2007). 【50】 P. Kubiak, J. Geserick, N. Husing, M. Wohlfahrt-Mehrens, Electrochemical performance of mesoporous TiO2 anatase, J. Power Sources, 175, 510 (2008).
【51】 M. Zukalov, M. Kalb, L. Kavan, I. Exnar, M. Gratzel, Pseudocapacitive lithium storage in TiO2(B), Chem. Mater., 17, 1248 (2005).
【52】 A. R. Armstrong, G. Armstrong, J. Canales, P. G. Bruce, TiO2-B nanowires as negative electrodes for rechargeable lithium batteries , J. Power Sources, 146, 501 (2005).
【53】 W. J. H. Borghols, D. Lutzenkirchen-Hecht, U. Haake, E. R. H. van Eck, F. M. Mulder, M. Wagemaker, The electronic structure and ionic diffusion of nanoscale LiTiO2 anatase, Phys. Chem. Chem. Phys., 11, 5742 (2009).
【54】 L. Kavan, A. Attia, F. Lenzmann, S. H. Elder, M. J. Gratzel, TiO2-B nanowires as negative electrodes for rechargeable lithium batteries, J. Electrochem. Soc., 147, 2897 (2000). 【55】 H. Han, T. Song, J. Y. Bae, L. F. Nazar, H. Kim, U. Paik, Nitridated TiO2 hollow nanofibers as an anode material for high power lithium ion batteries, Energy Environ Sci., 4, 4532 (2011).
【56】 H. Park, T. Song, H. Han, U. Paik, Electrospun Li4Ti5O12 nanofibers sheathed with conductive TiN/TiOxNy layer as an anode material for high power Li-ion batteries, J. Power Source, 1-5 (2012). 【57】 H. Lindstrom, S. Sodergren, A. Solbrand, H. Rensmo, J. Hjelm, A. Hagfeldt, S. E. Lindquist, Li+ Ion Insertion in TiO2 (Anatase). 2. Voltammetry on Nanoporous Films, J. Phys. Chem. B, 101, 7717 (1997).
【58】 Y. X. Leng, Z. H. Wang, N. Huang, Structure and Properties of Ti-O-N Films Synthesized by Reactive Magnetic Sputtering, Physics Procedia, 18, 40 (2011). 【59】 W. Kern, Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology, RCA Review, 31, 187 (1970).
【60】 “Solid State Electrochemistry”, P. G. Bruce, Ed., Cambridge Univ. Press, Cambridge, England, ch.8 (1995).

【61】 Allen J. Bard, Larry R. Faulkner, Electrochemical methods: fundamentals and applications, John Wiley &; Sons, 9, 316 (1980).
【62】 J. Ross MacDonald, Comparison and discussion of some theories of the equilibrium electrical double layer in liquid electrolytes, J. Electroanal. Chem. and Interfacial Electrochemistry, 223, 1 (1987).
【63】 蔡宜蓁,以射頻反應式磁控濺鍍沉積AZO透明導電膜特性之研究(2007)。
【64】 K. F. Chiu, K. M. Lin, C. L. Chen, C. C. Lin, H. J. Leu, Nano-Crystalline TiO2 as Intercalation Electrodes for Li Batteries, ECS Trans., 35, 103 (2011).
【65】 G. F. Ortiz, I. Hanzu, P. Knauth, P. Lavela, J. L. Tirado, T. Djenizian, TiO2 nanotubes manufactured by anodization of Ti thin films for on-chip Li-ion 2D microbatteries, Electrochim. Acta, 54, 4262 (2009).
【66】 P. Poizot, S. Laruelle, S. Grugeon, J. M. Tarascon, Rationalization of the Low-Potential Reactivity of 3d-Metal-Based Inorganic Compounds toward Li, J. Electrochem. Soc., 149, A1212 (2002).
【67】 A. R. Armstrong, G. Armstrong, J. Canales, P. G. Bruce, TiO2-B nanowires as negative electrodes for rechargeable lithium batteries, J. Power Sources, 146, 501 (2005).
【68】 T. Ohzuku, T. Kodoma, T. Hirai, Electrochemistry of anatase titanium dioxide in lithium nonaqueous cells, J. Power Sources, 14, 153 (1985).
【69】 B. Zachau-Christiansen, K. West, T. Jacobsen, S. Atlung, Lithium insertion in different TiO2 modifications, Solid State Ion., 28, 1176 (1998).
【70】 L. J. Fu, T. Zhang, Q. Cao, H.P. Zhang, Y. P. Wu, Preparation and characterization of three-dimensionally ordered mesoporous titania microparticles as anode material for lithium ion battery, Electrochem. Commun., 9, 2140 (2007).
【71】 S. K. Panda, Y. Yoon, H. S. Jung, W. S. Yoon, H. Shin, Nanoscale size effect of titania (anatase) nanotubes with uniform wall thickness as high performance anode for lithium-ion secondary battery, J. Power Sources, 204, 162 (2012).
【72】 H. Park, T. Song, H. Han, U. Paik, Electrospun Li4Ti5O12 nanofibers sheathed with conductive TiN/TiOxNy layer as an anode material for high power Li-ion batteries ,J. Power Source, 1-5 (2012).
【73】 H. Windishmann, Intrinsic stress in sputter-deposited thin film, CRC
Crit. Rev. Solid State Mat. Sci., 17, 547 (1992). 【74】 H. Han, T. Song, J. Y. Bae, L. F. Nazar, H. Kim, U. Paik, Nitridated TiO2 hollow nanofibers as an anode material for high power lithium ion batteries ,Energy Environ Sci., 4 ,4532 (2011).
【75】 http://www.science-and-fun.de/tools/
【76】 P. Kubiak, J. Geserick, N. Husing, M. Whlfahrt-Mehrens, Electrochemical performance of mesoporous TiO2 anatase ,J. Power Sources, 175, 510 (2008).
【77】 X. D. Sun, C. L. Ma, Y. D. Wang, H. D. Li, Al13-pillared anatase TiO2 as a cathode for a lithium battery, Institute of Physics Publishing, 15, 1535, (2004).
【78】 M. Inaba, Y. Oba, F. Niina, Y. Marota, Y. Ogino, A. Tasaka, K. Hirota, TiO2(B) as a promising high potential negative electrode for large-size lithium-ion batteries ,J. Power Source, 189, 580 (2009).
【79】 F. O. Gregorio, L, Hanzu, T. Djenizian, P. Lavela, J. L. Tirado, P. Knauth, Alternative Li-Ion Battery Electrode Based on Self-Organized Titania Nanotubes ,Chem. Mater., 21, 63 (2009).
【80】 P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Searching for new anode materials for the Li-ion technology: time to deviate from the usual path, J. Power Sources, 97, 235 (2001).
【81】 P. Novak, CuO cathode in lithium cells-II. Reduction mechanism of CuO, Electrochim. Acta, 30, 1687 (1985).
【82】 Y. M. Lin, P. R. Abel, D. W. Flaherty, J. Wu, K. J. Stevenson, A. Heller, C. B. Mullins, Morphology Dependence of the Lithium Storage Capability and Rate Performance of Amorphous TiO2 Electrodes, J. Phys. Chem. C, 115, 2585 (2011).
【83】 Gregorio F. Ortiza, Ilie Hanzua, Philippe Knautha, Pedro Lavela b, José L. Tirado, Thierry Djenizian, TiO2 nanotubes manufactured by anodization of Ti thin films for on-chip Li-ion 2D microbatteries , Electrochim. Acta, 54, 4262 (2009).
【84】 C. Jiang, M. Wei, Z. Qi, T. Kudo, I. Honma, H. Zhou, Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode, J. Power Source, 166, 239 (2007).
【85】 M. Marketa, M. Kalbac, L. Kavan, I. Exnar, M. Graetzel, Pseudocapacitive Lithium Storage in TiO2(B), Chem. Mater., 17, 1248 (2005).
【86】 Y. Wang, M. Wu, W. F. Zhang, Preparation and electrochemical characterization of TiO2 nanowires as an electrode material for lithium-ion batteries, Electrochim. Acta, 53, 7863 (2008).
【87】 R. Devisri, R. J. Archchana Devy, Reliable and Power Relaxation Multipath Routing Protocol for Wireless Sensor Networks, International Conference on Advancements in Information Technology, 20 (2011).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 葉郁菁(2010)。跨國婚姻家庭文化與語言學習不對等現象之探討,教育資料與研究雙月刊,第97 期:頁25-42。
2. 黃森泉、張雯雁(2003)。〈外籍新娘婚姻適應與子女教養問題之探討〉,《社會科教育研究》,第8 期:頁135-169。
3. 黃森泉、張雯雁(2003)。〈外籍新娘婚姻適應與子女教養問題之探討〉,《社會科教育研究》,第8 期:頁135-169。
4. 張高賓(2001)。單親兒童父母教養方式、家庭環境與情緒穩定之關係研究。屏東師院學報,14,465-504。
5. 張高賓(2001)。單親兒童父母教養方式、家庭環境與情緒穩定之關係研究。屏東師院學報,14,465-504。
6. 黃玉枝(1993)。國中資優學生與普通學生學習風格及學校適應之比較研究。特殊教育研究學刊,9,249-276。
7. 黃玉枝(1993)。國中資優學生與普通學生學習風格及學校適應之比較研究。特殊教育研究學刊,9,249-276。
8. 陳英豪、汪榮才、李坤崇(1993)。國中國小學生學習適應及其相關因素之比較研究。國教之友,44(3),5-14。
9. 陳英豪、汪榮才、李坤崇(1993)。國中國小學生學習適應及其相關因素之比較研究。國教之友,44(3),5-14。
10. 余民寧(2006)。影響學習成就因素的探討。教育資料與研究雙月刊,73,11-24。
11. 余民寧(2006)。影響學習成就因素的探討。教育資料與研究雙月刊,73,11-24。
12. 葉郁菁(2010)。跨國婚姻家庭文化與語言學習不對等現象之探討,教育資料與研究雙月刊,第97 期:頁25-42。
13. 楊國樞(1986)。家庭因素與子女行為-台灣研究的評析。中華心理學刊,28,7-28。
14. 楊國樞(1986)。家庭因素與子女行為-台灣研究的評析。中華心理學刊,28,7-28。
15. 鄭翠娟(1997)。國小學童的學習適應、焦慮人格特質及其相關背景變項之研究。嘉義師院學報,11,119-156。
 
系統版面圖檔 系統版面圖檔