(3.234.221.67) 您好!臺灣時間:2021/04/11 16:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭元瑞
研究生(外文):Yuan-Ruei Jheng
論文名稱:反應性濺鍍氮化磷酸鋰鐵薄膜正極之研究
論文名稱(外文):Reactive sputtering of LiFePO4-xNy
指導教授:邱國峰邱國峰引用關係
指導教授(外文):Kuo-Feng Chiu
口試委員:邱國峰呂晃志唐宏怡
口試委員(外文):Kuo-Feng ChiuHoang-Jyh LeuHong-Yi Tang
口試日期:2013-06-14
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:132
中文關鍵詞:磷酸鋰鐵摻氮薄膜電池反應性濺鍍
外文關鍵詞:LiFePO4-xNythin film batteryHigh rate performance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
鋰離子二次電池由於高能量密度與良好的循環性能,使得鋰離子電池研究發展逐漸受到廣泛重視,伴隨現今科技產品的發達、不同攜帶式電子用品普及 ,如:行動電話、數位相機、筆記型電腦,使得電源提供元件越顯重要。為因應現今社會強調輕薄短小的潮流,鋰離子電池之薄膜化已是不可避免的趨勢。
鋰離子電池商業化已多年,我們可以在我們的手機、筆電……等電子產品裡面看到鋰離子電池,這些鋰離子電池的正極材料多為LiCoO2,LiCoO2電化學性能穩定、製程簡單,作為鋰離子電池正極材料是很不錯的選擇。但是,因為Co價格昂貴、對環境衝擊大,許多研究人員都期待用其他材料取代LiCoO2。LiFePO4電化學性能優良,且其價格低廉、安全性高,一直是眾人所期待的鋰離子電池正極材料。但在實際應用上仍有一些缺點尚待克服,如低導電性與鋰離子擴散瓶頸,這些缺點皆可藉由改善製備磷酸鋰鐵之過程,而獲得有效地改善。
近年來有許多文獻提出許多方法改善LiFePO4導電性不佳的問題,常見的為披覆碳及摻雜過渡金屬。本實驗是以磁控反應性濺鍍法製造LiFePO4薄膜,為了增加LiFePO4薄膜之導電性,在濺鍍的過程中通入氮氣,使氮成功摻雜入LiFePO4之中,並在不同的氮氣/氬氣比例下合成各種LiFePO4-xNy薄膜。以場發射掃描式電子顯微鏡、X光繞射儀、拉曼光譜儀與四點探針對不同氮/氬比氣氛的LiFePO4-xNy薄膜做表面形貌、結構、導電性分析,並以X光光電子能譜儀分析與傅立葉轉換紅外線光譜儀去證實氮有成功摻雜進去LiFePO4之中。藉由上述分析結果得知摻雜氮可使LiFePO4薄膜導電性得到改善。
於電化學分析中看到,在最佳化的條件下,LiFePO4-xNy可於45C大電流下進行充放電,且放電平台可維持在3.2V以上,且在10C的電容量更高於100 mAh/g,可見摻雜氮可以提高LiFePO薄膜的電化學性能。
Rechargeable lithium ion batteries have emerged as one of the important power sources for various mobile devices such as cellular phones, cameras, and notebook computers due to high energy density and excellent cyclic performance. In order to reduce weights and volumes for mobile devices, the demands of lighter and thinner batteries are increasing. As the sizes of batteries are scaled down to micrometer/nanometer rang, the concept of thin film batteries have become inevitable.
Lithium ion batteries has been commercialized for a long time. It can be observed that lithium ion batteries was lively used in mobile phone and notebook. The cathode materials for these lithium ion batteries is usually used LiCoO2 due to its stable electrochemical performance, simply process. Therefore, it is good choice to used LiCoO2 for the cathode of lithium ion batteries. However, because Co is expensive and unfriendly to environment, many researchers were used the other materials to replace LiCoO2. LiFePO4 is a popular cathode materials for lithium ion batteries due to good electrochemical performances, low cost, high safety. However, it is nearly an electronic insulator with conductivity as low as 10−9 Scm−1, and also shows low Li ion transport rate over the LiFePO4/FePO4 two-phase boundary during the charge-discharge process. By improving the preparation processes, the electrochemical properties of LiFePO4 can be enhanced.
Recently, many researchers have been demonstrated that improvement of LiFePO4 electronic conductivity, such as coating carbon and doping transition metal. Lithium iron phosphate (LiFePO4) thin films have been synthesized by reactive magnetron sputter deposition process. In order to increase the conductivity of LiFePO4 thin films, nitrogen gas has been introduced during deposition, which results in nitrogen doping of LiFePO4 thin films. The LiFePO4-xNy thin films deposited under various nitrogen/argon ratios were characterized. The surface morphology and microstructures of as-deposited thin films were observed by scanning electron microscope (FESEM). The film crystallography and electronic conductivity was characterized by grazing angle X-ray diffraction (XRD) , Raman spectroscopy and four point probe. And confirmed by X-ray Photoelectron Spectrum and Fourier transform infrared spectroscopy nitrogen have successfully doped into LiFePO4. The results showed that the conductivity of the LiFePO4 thin films have been significantly improved by nitrogen doping.
Under optimal condition, the LiFePO4-xNy thin films are able to sustain a current density as high as A/g (45 C-rate) during charge-discharge process, and Discharge plateau can be maintained over 3.2V. The capacity at A/g (10 C-rate) is higher than 100 mAh/g. All of these results nitrogen-doped can improve the electrochemical performance of LiFePO4 films.
總目錄
中文摘要 i
Abstract iii
總目錄 v
圖目錄 viii
表目錄 xi
第一章 研究動機 1
1.1 研究動機 1
第二章 理論基礎與文獻回顧 4
2.1 鋰離子二次電池的起源與簡介 4
2.1.1 電池的演進歷史 4
2.1.2 鋰離子電池的工作原理 6
2.1.3 薄膜鋰離子電池 9
2.1.4 正極材料 11
2.2 磷酸鋰鐵正極材料 13
2.2.1 磷酸鋰鐵簡介 13
2.2.2 磷酸鋰鐵材料的結構特性 16
2.2.3磷酸鋰鐵之研究現況 17
2.2.4磷酸鋰鐵摻雜陰、陽離子之研究 25
2.2.5磷酸鋰鐵薄膜製備方法 29
2.2.6磷酸鋰鐵快速充放電相關之研究 35
第三章 實驗方法與鑑定分析 51
3.1 實驗材料與設備 51
3.2 實驗流程 53
3.3薄膜試片製備 54
3.3.1 不鏽鋼與碳布基材 54
3.3.2 射頻磁控濺鍍法製備摻氮磷酸鋰鐵薄膜 55
3.3.3 退火處理 56
3.4薄膜試片分析 57
3.4.1傅立葉轉換紅外線光譜儀(FTIR) 57
3.4.2冷場發射掃描式電子顯微鏡及能量散佈光譜儀(Cold Field Emission Scanning Electron Microscope and Dispersive Spectrometer) 58
3.4.3 低掠角X光繞射儀(Glazing Angle X-Ray Diffractometer) 59
3.4.4 拉曼光譜儀 (RAMAN Spectroscope) 60
3.4.5 X-ray 光電子能譜儀(XPS) 61
3.4.6 薄膜電性量測 61
3.5薄膜電化學特性分析 63
3.5.1 半電池元件製作 63
3.5.2 鈕扣型電池之組裝 63
3.5.3 循環伏安法測試 64
3.5.4 電池充放電性能量測 65
3.6 交流阻抗分析 66
第四章 結果與討論 79
4.1材料鑑定與分析 79
4.1.1 傅立葉轉換紅外線光譜儀(FTIR) 79
4.1.2 表面型態與元素分析 80
4.1.3低掠角X光繞射儀(Glazing Angle X-Ray Diffractometer) 82
4.1.4 拉曼光譜儀 (RAMAN Spectroscope) 84
4.1.5 X光光電子能譜儀分析(X-Ray Photoelectron Spectrum,XPS) 84
4.1.6 電性量測 88
4.2 交流阻抗測試 90
4.3 電化學量測評估 93
4.3.1 循環伏安法(Cycle Voltammetry) 93
4.3.2 半電池充放電測試 94
4.3.3 快速充放電測試 96
4.3.4 循環壽命測試 98
4.4 不鏽鋼與碳布基材分析 100
第五章 結論 125
參考文獻 126
【1】Z. Zhang, D. Fouchard, J.R. Rea, Differential scanning calorimetry material studies: implications for the safety of lithium-ion cells, J. Power Sources, 70, 16 (1998).
【2】楊模樺,工業材料157 期, p.144 (1989)。
【3】林柏勳,射頻磁控濺鍍法製備摻碳磷酸鋰鐵(LiFePO4/C)薄膜之研究 (2006)。
【4】Z. - J. Liu, X. - J. Huang, D. -S. Wang, First-principle investigations of N doping in LiFePO4, Solid State Commun., 147, 505 (2008).
【5】Hong Li, Z. Wang, L. Chen, and X. Huang, Research on Advanced Materials for Li-ion Batteries, Adv. Mater., 21, 4593, (2009)
【6】L.C. Zhang, Z. Hu, L. Wang, F. Teng, Y. Yu, C.H. Chen, Rice paper-derived 3D-porous carbon films for lithium-ion batteries, Electrochim. Acta, 89, 310 (2013).
【7】J. Hajek, French Patent., 8, 10 (1994).
【8】J. R. Owen, Chemical Society Reviews, Rechargeable lithium batteries, 26, 259 (1997).
【9】工業技術研究院,小型二次電池市場與技術專輯,工業材料系列叢書7 (1996)。
【10】M. Armand, D. W. Murphy, J. Broadhead, B. C. H. steele, Plenum Press, New York, 145 (1980).
【11】Nagaura, K. Tozawa, Prog. Batt. Solar Cells, 9, 209 (1990).
【12】Materials Design and Optimization ,C. Julien and G. -A. Nazri,“Solid State Batteries, Kluwer Academic Publishers, (1994).
【13】M. Antaya, J.R. Dahn, J.S. Preston, E. Rossen and J.N. Reimers, Preparation and Characterization of LiCoO2 Thin Films by Laser Ablation Deposition, J. Electrochem. Soc., 140, 575 (1993).
【14】J. B. Bates and N.J. Dudney, Thin Film Rechargeable Lithium Batteries for Implantable Devices, American Society for Artificial Internal Organs , Inc. l43 , 5 , 644 (1997).
【15】J.B. Bates , N.J. Dudney , G.R. Gruzalski , R.A. Zuhr , A. Choudhury , C.F.Luck , Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries, J. Power Sources, 103, 43 (1993).
【16】X. Yu, J.B. Bates, G.E. Jellison, B.C. Sales, A Stable Thin-Film Lithium Electrolyte: Lithium Phosphorus Oxynitride, J. Electrochem. Soc.,144,524 (1997).
【17】A. S. Andersson, B. Kalska, L. Haggstrom, J.O. Thomas, Lithium extraction/insertion in LiFePO4 : an X-ray diffraction and Mössbauer spectroscopy study, Solid State Ion., 130, 41 (2000).
【18】Y. Sakurai, H. Arai, J.I. Yamaki, Preparation of electrochemically active -LiFeO2 at low temperature, Solid State Ion., 113, 29 (1998)
【19】S.J. Kwon, C.W. Kim, W.T. Jeong, K.S. Lee, Synthesis and electrochemical properties of olivine LiFePO4 as a cathode material prepared by mechanical alloying, J. Power Sources, 137, 93 (2004).
【20】A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, J.B. Goodenough, Mapping of Transition Metal Redox Energies in Phosphates with NASICON Structure by Lithium Intercalation, J. Electrochem. Soc., 144 (8), 2581 (1997).
【21】A. K. Padhi, V. Manivannan, J.B. Goodenough, Tuning the Position of the Redox Couples in Materials with NASICON Structure by Anionic Substitution, J. Electrochem. Soc., 145 (5), 518 (1998).
【22】A. K. Padhi, K. S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries, J. Electrochem. Soc. , 144 (4), 1188 (1997).
【23】A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, J. B. Goodenough, Effect of Structure on the Fe3+/Fe2+ Redox Couple in Iron Phosphates, J. Electrochem. Soc., 144 (5), 1609 (1997).
【24】S. Morzilli, B. Scrosati, Iron oxide electrodes in lithium organic eletrolyte rechargeable batteries, Electrochim. Acta, 30 (10), 1271 (1985)
【25】Andersson A. S. , Thomas J. O., The source of first-cycle capacity loss in LiFePO4, J Power Sources, 97-98 : 498 (2001)
【26】J. B. Goodenough, Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries, J. Electrochem. Soc. , 144 (4), 1188 (1997).
【27】Andersson A. S. , Thomas J. O., The source of first-cycle capacity loss in LiFePO4, J Power Sources, 97-98 : 498 (2001)
【28】G. Arnold, J. Garche, R. Hemmer, S. Strobele, C. Vogler, M.W. Mehrens, Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique, J. Power Sources, 119, 247 (2003).
【29】K. S. Park, K. T. Kang, S. B. Lee, G. Y. Kim, Y. J. Park, H. G. Kim, Synthesis of LiFePO4 with fine particle by co-precipitation method, Mater. Research Bull. 39, 1803 (2004).
【30】S. Yang, P. Y. Zavalij, M. S. Whittingham, Hydrothermal synthesis of lithium iron phosphate cathodes, Electrochem. Commun., 3, 505 (2001).
【31】F. Croce, A. D Epifanio, J. Hassoun, A. Deptula, T. Olczac, B. Scrosati, A Novel Concept for the Synthesis of an Improved LiFePO4 Lithium Battery Cathode, Solid-State Lett., 5 (3), A47 (2002).
【32】K. S. Park, J. T. Son, H. T. Chung, S. J. Kim, C. H. Lee, K. T. Kang, H. G. Kim, Surface modification by silver coating for improving electrochemical properties of LiFePO4, Solid State Comm., 129, 311 (2004).
【33】S. Y. Chung, J. T. Bloking, Y. M. Chiang, Electronically conductive phospho-olivines as lithium storage electrodes, Nat. Mater., 1, 123 (2002).
【34】N. Penazzi, M. Arrabito, M. Piana, S. Bodoardo, S. Panero, I. Amadei, Mixed lithium phosphates as cathode materials for Li-Ion cells, J. Euro. Ceram. Soc., 24, 1381 (2004).
【35】Ravet, N., Goodenough, J. B., Besner, S., Simoneau, M., Hovington, P., &; Armand, M. (1999, October). Improved iron based cathode material. In Proceedings of the 196th ECS meeting, Honolulu, extended abstract
【36】H. Huang, S. C. Yin, L. F. Nazar, Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates, Electrochem. Solid-State Lett., 4 (10), A170 (2001).
【37】Z. Chen, J. R. Dahn, Reducing Carbon in LiFePO4 /C Composite Electrodes to Maximize Specific Energy, Volumetric Energy, and Tap Density, J. Electrochem. Soc., 149 (9), A1184 (2002).
【38】S. Franger, F. L. Cras, C. Bourbon, H. Rouault, LiFePO4 Synthesis Routes for Enhanced Electrochemical Performance, Solid-State Lett., 5 (10), A231 (2002).
【39】R. Dominko, J. M. Goupil, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, J. Jamnik, Impact of LiFePO4 /C Composites Porosity on Their Electrochemical Performance, J. Electrochem. Soc., 152 (5), A858 (2005).
【40】S.S. Zhang, J.L. Allen, K. Xu, T.R. Jow, Optimization of reaction condition for solid-state synthesis of LiFePO4-C composite cathodes, J. Power Sources 147 234 (2005)
【41】B. Kang, G. Ceder, Battery materials for ultrafast charging and discharging, Nature, 458, 190 (2009).
【42】S. K. Martha, J. O. Kiggans, J. Nanda, and N. J. Dudney, Advanced Lithium Battery Cathodes Using Dispersed Carbon Fibers as the Current Collector, J. Electrochem. Soc., 158 (9) A1060 (2011).
【43】C. Y. Ouyang, S. Q. Shi, Z. X. Wang, H. Li, X.J. Huang and L. Q. Chen, The effect of Cr doping on Li ion diffusion in LiFePO4 from first principles investigations and Monte Carlo simulations, J. Phys.: Condens., Matter 16 2265 (2004).
【44】C.Y. Ouyang, D.Y. Wang, S.Q. Shi, Z.X. Wang, H. Li, X.J. Huang, L.Q. Chen, First Principles Study on NaxLi1−xFePO4 As Cathode Material for Rechargeable Lithium Batteries, Chin.Phys. Lett. , 23, 61 (2006).
【45】X. Yin, K. Huang, S. Liu, H. Wang, H. Wang, Preparation and characterization of Na-doped LiFePO4/C composites as cathode materials for lithium-ion batteries, J. Power Sources, 195, 4308 (2010).
【46】G. -X. Wang, S. Bewlay, J. Yao, J. -H. Ahn, S. -X. Dou, H. -K. Liu, Electrochem. Solid-State Lett., 7A 503 (2004).
【47】G. -X. Wang, S. Bewlay, S. -A. Needham, H. -K. Liu, R. -S. Liu, V. -A. Drozd, J. -F. Lee, J. -M. Chen, J. Electrochem Soc., 153A25 (2006).
【48】D. Wang, H. Li, S. Shi, X. Huang, L. Chen, Improving the rate performance of LiFePO4 by Fe-site doping, Electrochim. Acta, 50 (2005) 2955
【49】H. Liu, Q. Cao, L.J. Fu, C. Li, Y.P. Wu , H.Q. Wu, Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries, Electrochem. Commun., 8, 1553 (2006).
【50】A.J. Bard, L.R. Faulkner, Electrochemical Methods, second ed., Wiley, 231 (2001).
【51】K. Kubo, M. Fujiwara, S. Yamada, S. Arai, M. Kanda, Synthesis and electrochemical properties for LiNiO2 substituted by other elements, J. Power Sources, 68, 553 (1997).
【52】G.H. Kim, J.H. Kim, S.T. Myung, C.S. Yoon, Y.K. Sun, Improvement of High-Voltage Cycling Behavior of Surface-Modified Li [ Ni1/3Co1/ 3Mn1/3 ] O2 Cathodes by Fluorine Substitution for Li-Ion Batteries, J. Electrochem. Soc., 152, A1707 (2005) .
【53】G.G. Amatucci, N. Pereira, T. Zheng, I. Plitz, J.M. Tarascon, Enhancement of the electrochemical properties of Li1Mn2O4 through chemical substitution, J. Power Sources, 81, 39 (1999).
【54】G.G. Amatucci, N. Pereira, T. Zheng, J.M. Trarascon, Failure Mechanism and Improvement of the Elevated Temperature Cycling of LiMn2 O 4 Compounds Through the Use of the LiAlxMn2 − x O 4 − z F z Solid Solution, J. Electrochem. Soc., 148, A171 (2001).
【55】L. Fei, Z. Yichun, L. Jun, P. Yong, Enhancement of F-doping on the electrochemical behavior of carbon-coated LiFePO4 nanoparticles prepared by hydrothermal route, Electrochim. Acta, 56, 8833 (2011).
【56】L. Yang , L. Jiao , Y. Miao , Huatang Yuan, Improvement of electrochemical properties of LiFePO4/C cathode materials by chlorine doping, J. Solid State Electrochem., 13:1541 (2009).
【57】Z.-H. Wang, L.-X. Yuan, M. Wu, D. Sun, Yun-Hui Huang, Effects of Na+ and Cl− co-doping on electrochemical performance in LiFePO4/C Electrochim. Acta, 56, 8477 (2011).
【58】X.-Z. Liao, Y.-S.i He, Z.-F. Ma, X.-M. Zhang, L. Wang, Effects of fluorine-substitution on the electrochemical behavior of LiFePO4/C cathode materials, J. Power Sources, 174, 720 (2007).
【59】J. Ma, Q. -Z. Qin, Electrochemical performance of nanocrystalline LiMPO4 thin-films prepared by electrostatic spray deposition, J. Power Sources, 148, 66 (2005).
【60】A. Eftekhari, Electrochemical Deposition and Modification of LiFePO4 for the Preparation of Cathode with Enhanced Battery Performance, J. Electrochem. Soc., 151, A1816 (2004).
【61】K. -F. Chiu, H. -Y. Tang, B. -S. Lina, High Conductivity LiFePO4 /C Composite Thin Films with Ti Underlayers Deposited by Radio Frequency Sputtering, J. Electrochem. Soc., 154 (4), A364 (2007).
【62】K. -F. Chiu, Optimization of Synthesis Process for Carbon-Mixed LiFePO4 Composite Thin-Film Cathodes Deposited by Bias Sputtering, J. Electrochem. Soc., 154 (2), A129 (2007).
【63】J. Hong, C. Wang, N. J. Dudney, M. J. Lancec, Characterization and Performance of LiFePO4 Thin-Film Cathodes Prepared with Radio-Frequency Magnetron-Sputter Deposition, J. Electrochem. Soc., 154 (8), A805 (2007).
【64】K. -F. Chiu , P. Y. Chen, Structural evolution and electrochemical performance of LiFePO4/C thin films deposited by ionized magnetron sputtering, Surface &; Coatings Technology, 203, 872 (2008).
【65】J. Xie, N. Imanishi, T. Zhang, A. Hirano, Y. Takeda, O. Yamamoto, Li-ion diffusion kinetics in LiFePO4 thin film prepared by radio frequency magnetron sputtering, Electrochim. Acta, 54, 4631 (2009).
【66】F. Sauvage, E. Baudrin, M. Morcrette, J. -M. Tarascon, Effect of texture on the electrochemical properties of LiFePO4 thin films, Electrochemical and Solid-State Lett., 7 (1), A15 (2004).
【67】F. Sauvage, E. Baudrin, L. Gengembre, J. -M. Tarascon, Effect of texture on the electrochemical properties of LiFePO4 thin films, Solid State Ion., 176, 1869 (2005).
【68】C. Yada, Y. Iriyama, S. -K. Jeong, T. Abe, M. Inaba, Z. Ogumi, Electrochemical properties of LiFePO4 thin films prepared by pulsed laser deposition, J. Power Sources, 146, 559 (2005).
【69】Z. Lu, H. Cheng, M. Lo, C. Y. Chung , Adv. Funct. Mater., Pulsed Laser Deposition and Electrochemical Characterization of LiFePO4–Ag Composite Thin Films, 17, 3885 (2007).
【70】Z. G. Lu, M. F. Lo, C. Y. Chung, Pulse Laser Deposition and Electrochemical Characterization of LiFePO4−C Composite Thin Films, J. Phys. Chem., 112, 7069 (2008).
【71】P. S. Herle, B. Ellis, N. Coombs, L. F. Nazar, Nano-network electronic conduction in iron and nickel olivine phosphates, Nature materials, 3, 147 (2004).
【72】D. Zane, M. Carewska, S. Scaccia, F. Cardellini, P. P. Prosin, Factor affecting rate performance of undoped LiFePO4, Electrochim. Acta, 49, 4259 (2004).
【73】C. Delacourt, P. Poizot, S. Levasseur, C. Masquelier, Size Effects on Carbon-Free LiFePO4 Powders The Key to Superior Energy Density, Electrochem. Solid-State Lett., 9 (7), A352 (2006).
【74】K. Zaghib, J.B. Goodenough, A. Mauger, C. Julien, Unsupported claims of ultrafast charging of LiFePO4 Li-ion batteries, J. Power Sources, 194(2), 1021 (2009).
【75】G. Ceder, B. Kang , Response to “unsupported claims of ultrafast charging of Li-ion batteries”, J. Power Sources, (2009).
【76】C.-C. Chang, T.-K. Chen, Tris(pentafluorophenyl) borane as an electrolyte additive for LiFePO4 battery, J. Power Sources, 193 834, (2009).
【77】B. B.i, G. Z. and R. K., Intermolecular Li+ bonds between N-oxides with fluctuatung Li+ ions: an FTIR study, Chemical Physics Letters, 146, 1, 2 (1988).
【78】Y.–H. Choi, J.–H. Kim, K.–H. Paek, W.–T. Ju, Y.S. Hwang, Characteristics of atmospheric pressure N2 cold plasma torch using 60-Hz AC power and its application to polymer surface modification, Surf. Coat. Technol., 193, 319 (2005).
【79】Y.H. Park, J.K. Kim, J.H. Lee, Y.W. Joo, H.S. Noh, J.W. Lee, N2 effect on GaAs etching at 150 mTorr capacitively-coupled Cl2/N2 plasma , S.J. Pearton, Microelectron. Eng., 87, 548 (2010)
【80】M. S Song, D. Y. Kim, Y. M. Kang, Y. I. Kim, J. Y. Lee, H. S. Kwon, Amphoteric effects of Fe2P on electrochemical performance of lithium iron phosphate–carbon composite synthesized by ball-milling and microwave heating, J. Power Sources, 180, 546 (2008).
【81】C. W. Kim, J. S. Park, K. S. Lee, Effect of Fe2P on the electron conductivity and electrochemical performance of LiFePO4 synthesized by mechanical alloying using Fe3+ raw material, J. Power Sources, 163 (1), 144 (2006).
【82】Y. Bai, Y. Yin, J. Yang, C. Qing and W. Zhang, Raman study of pure, C-coated and Co-doped LiFePO4: thermal effect and phase stability upon laser heating, J. Raman Spectrosc., 42, 831 (2011).
【83】K.-F. Chiu, C. C. Chen, K. M. Lin, and C. C. Lo, Lithium phosphorus oxynitride solid-state thin-film electrolyte deposited and modified by bias sputtering and low temperature annealing, J. Vac. Sci. Technol., A 28,4, (2010).
【84】Z. Hu, D. Li and K. Xie, Bull. Influence of radio frequency power on structure and ionic conductivity of LiPON thin films, Mater. Sci., Vol. 31, No. 4, pp. 681 (2008).
【85】Z. - J. Liu, X. - J. Huang, D. -S. Wang, Solid State Commun., First-principle investigations of N doping in LiFePO4, 147, 505 (2008).
【86】J. C. Ndamanisha, Y. Hou, J. Bai, L. Guo, Effects of ferrocene derivative on the physico-chemical and electrocatalytic properties of ordered mesoporous carbon, Electrochim. Acta, 54, 3935 (2009).
【87】H. Liu, D. Tang, The low cost synthesis of nanoparticles LiFePO4/C composite for lithium rechargeable batteries, Solid State Ion., 179, 1897 (2008).
【88】M. S. Bhuvaneswari, N. N. Bramnik, D. Ensling, H. Ehrenberg, W. Jaegermann, Synthesis and characterization of Carbon Nano Fiber/LiFePO4 composites for Li-ion batteries, J. Power Sources 180, 553 (2008).
【89】M. M. Thackeray, W. I. F. David, J. B. Goodenough, Structural characterization of the lithiated iron oxides LixFe3O4 and LixFe2O3 (0【90】D. Wang, H. Li, S. Shi, X. Huang, L. chen, Improving the rate performance of LiFePO4 by Fe-site doping, Electrochim. Acta, 50 (14), 2955 (2005).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔