跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/21 06:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊睬晴
研究生(外文):Tsai-ching Yang
論文名稱:骨母細胞生長於生物活性微弧氧化層之界面研究
論文名稱(外文):Interfacial Study of the Osteoblast Growth on Micro-arc Oxidized Bioactive Layers
指導教授:何主亮何主亮引用關係
指導教授(外文):Ju-Liang He
口試委員:鍾啟仁陳賢德何文福
口試日期:2013-07-30
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:106
中文關鍵詞:微弧氧化鈦金屬二氧化鈦氫氧基磷灰石氫氧基磷灰石-二氧化鈦體外細胞試驗
外文關鍵詞:micro-arc oxidation (MAO)titaniumtitanium dioxide (TiO2)hydroxyapatite (HAp)Hydroxyapatite-titanium dioxide (HAp-TiO2)In vitro cellular tests
相關次數:
  • 被引用被引用:0
  • 點閱點閱:392
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
鈦金屬及其合金因具無毒性、耐腐蝕性、良好之機械性質與生物相容性,近年成為骨科及牙科植入材的首選。為進一步提升鈦金屬之骨整合(Osseointegration)能力,以鈦金屬為基材透過微弧氧化(Micro-arc oxidation, MAO)生長俱有生物活性之陶瓷氧化層成為重要的議題。然而究竟MAO所得之不同生物活性陶瓷鍍層如何影響骨母細胞的貼附與生長之情形仍需要進一步釐清。是故本研究以MAO於鈦金屬表面分別生成具不同生物活性之銳鈦礦相二氧化鈦(Anatase-TiO2, A-TiO2)、金紅石相二氧化鈦(Rutile-TiO2, R-TiO2)、氫氧基磷灰石(Hydroxyaptite, HAp)及氫氧基磷灰石-二氧化鈦(Hydroxyaptite-titanium dioxide, HAp-TiO2)混相鍍層,並連同鈦金屬試片分別於表面進行骨母細胞生長試驗,觀察骨母細胞初期貼附及後續增生、分化及礦化等生物反應,並從骨母細胞與所得不同活性陶瓷層之間的界面觀察探討骨母細胞生長行為。
研究結果可知:所得生物活性陶瓷鍍層相較於未經處理之鈦金屬有著優異的細胞初期貼附及後續增生、分化及礦化能力,其中又以HAp-TiO2鍍層具有較佳之骨細胞相容性,此乃因其富含Ca及OH-基可有效吸附Ca2+、PO43-形成磷酸鈣化合物沉積,從而誘導骨母細胞初期貼附與後續生長,觀察HAp-TiO2鍍層之細胞礦化階段的吸光值表現可茲佐證。且初期培養於HAp-TiO2鍍層之細胞乃沿著孔洞內壁進行良好的貼附生長。而細胞培養7天則可看出HAp及HAp-TiO2鍍層之細胞表面產生大量細胞外基質(Extracellular matrix, ECM),培養時間增至21天,除了形成了針狀(Acicular)及珊瑚狀(Coral-like)形貌之類骨磷灰石結構外,從截面形貌亦顯示細胞已可緊密貼附且完全融合生長於鍍層孔洞中,形成一穩固交聯。TEM顯微觀察結果更進一步確認了針狀與珊瑚狀兩種形貌皆為氫氧基磷灰石結構。
In recent years, titanium and its alloys are frequently employed for orthopedic and dental implants because of their non-toxicity, corrosion resistance, good mechanical properties, and biocompatibility. To enhance the osseointegration capability of titanium implants, bioactive ceramic oxide layers grown on titanium substrate by micro-arc oxidation (MAO) treatment has become an important topic. However, in terms of osteoblasts adhesion and growth behavior on different bioactive ceramic coatings obtained by MAO, they still need to be clarified. Therefore, fabrication of anatase (A-TiO2), rutile (R-TiO2), hydroxyapatite (HAp), and the hydroxyapatite-titanium dioxide (HAp-TiO2) dual-phase coatings by MAO was carried out on titanium metal. Following with In vitro osteoblast cellular tests of these coated specimens together with bare Ti, the initial cell adhesion, proliferation, differentiation and other biological response were investigated, particularly at the interface between the coatings and the growing osteoblasts to reveal how the bioactive MAO layers affect the cell growth.
Results of cytocompatibility test indicated that the bioactive ceramic coatings by MAO present excellent cell adhesion, cell proliferation, cell differentiation and cell mineralization than bare Ti. Among the four types of MAO coatings, HAp-TiO2 coating has the best performance of osteoblast cytocompatibility due to its richness in Ca2+ ion and OH- group to enhance the calcium phosphate formation, and consequently to induce cell attachment and growth through the entire cell test. Surface and interfacial microscopic observation showed that, in the initial period of cell culture test, osteoblasts attach well along the inner wall of HAp-TiO2 coating pores. Even more, osteoblasts on HAp and HAp-TiO2 coatings produced a large amount of extracellular matrix (ECM) after 7 days. Over 21 days, the acicular and coral-shape bone-like apatite structures are found to produce by the osteoblasts cultured on both HAp coating and HAp-TiO2 coating, alone with the cells attached tightly onto these coatings as well as into the inner wall of the pores in the coatings. Microscopic observations by TEM further confirmed that both the acicular and coral-shape bone-like apatite structures are hydroxyapatite.
誌 謝
中文摘要
Abstract
總 目 錄
圖 目 錄
表 目 錄
第一章 前言
第二章 文獻回顧
2.1 骨組織生醫材料
2.1.1 骨組織生醫材料之性質
2.1.2 骨組織生醫材料之種類
2.2 醫用鈦金屬之基本特性與應用優勢
2.3 骨組織醫用鈦金屬表面活性改質
2.3.1 表面生物活化技術原理
2.3.2 鈦金屬表面生物活化處理技術發展
2.3.3 表面生物活化之微弧氧化改質技術
2.4 鍍層表面特性與骨母細胞間之作用情形
2.4.1 骨母細胞之生長行為
2.4.2 鍍層之表面形貌結構與化學特性
2.5 研究動機
第三章 研究方法
3.1 研究流程
3.2 微弧氧化鍍層製備
3.2.1 基材準備及前處理
3.2.2 微弧氧化製程參數設定
3.2.3 微弧氧化設備
3.3 微弧氧化鍍層微觀分析
3.3.1 晶體結構鑑定
3.3.2 微觀形貌觀察
3.3.3 化學鍵結分析
3.4 體外細胞試驗
3.4.1 細胞貼附試驗
3.4.2 細胞增生試驗
3.4.3 細胞分化試驗
3.4.4 細胞礦化能力
3.5 骨母細胞生長於生物活性陶瓷鍍層之行為觀察
第四章 結果與討論
4.1 微弧氧化生物活性陶瓷鍍層之生長行為
4.1.1 晶體結構分析結果
4.1.2 微觀形貌觀察結果
4.1.3 化學鍵結分析結果
4.2 生物活性陶瓷鍍層體外骨母細胞相容性探討
4.2.1 骨母細胞貼附能力
4.2.2 骨母細胞增生能力
4.2.3 骨母細胞分化及礦化試驗結果
4.3 細胞生長於生物活性陶瓷鍍層之行為觀察
4.3.1 骨母細胞培養於生物活性陶瓷鍍層之表面形貌觀察
4.3.2 骨母細胞培養於生物活性陶瓷鍍層之界面形貌觀察
4.3.3 骨母細胞於生物活性陶瓷鍍層之生長模型
第五章 結論
參考文獻
[1]行政院經濟建設委員會,“中華民國2012年至2060年人口推計”,行政院經濟建設委員會,2012。
[2]V.M. Wells, T.C. Hearn, K.A. McCaul, S.M. Anderton, A.E.R. Wigg and S.E. Graves, “Changing incidence of primary total hip arthroplasty and total knee arthroplasty for primary osteoarthritis”, The Journal of Arthroplasty, 17 (2002) 267–273.
[3]L. Sennerby, P. Thomsen and L.E. Ericson, “Ultrastructure of the bone-titanium interface in rabbits”, Journal of Materials Science: Materials in Medicine, 3 (1992) 262–271.
[4]D.E. Steflif, A.L. Sisk, G.R. Parr, L.K. Garner, P.J. Hanes, F.T. Lake, D.J. Berkery and P. Brewer, “Osteogenesis at the dental implant interface: high-voltage electron microscopic and conventional transmission electron microscopic observation”, Journal of Biomedical Materials Research, 27 (1993) 791–800.
[5]T.B. Van, S.D. Brown and G.P. Wirtz, “Mechanism of anodic spark deposition”, American Ceramic Society Bulletin Emerging Ceramics and Glass Technology, 56 (1977) 563–566.
[6]I. Zhitomirsky, “Cathodic electrosynthesis of titania films and powders”, Nanostructure Materials, 3 (1997) 521–528.
[7]E. Chang, W.J. Chang, B.C. Wang and C.Y. Yang, “Plasma spraying of zirconia-reinforced hydroxyapatite composite coatings on titanium: Part I Phase, microstructure and bonding strength”, Journal of Materials Science: Materials in Medicine, 8 (1997) 193–200.
[8]C.F. Feng, K.A. Khor, E.J. Liu and P. Cheang, “Phase transformations in plasma sprayed hydroxyapatite coatings”, Scripta Materialia, 42 (2000) 103–109.
[9]I. Zhitomirsky, “Electrophoretic hydroxyapatite coatings and fibers”, Materials Letters, 42 (2000) 262–271.
[10]M. Manso, S. Ogueta, P. Herrero-Fernández, L. Vázquez, M. Langlet and J.P. García-Ruiz, “Biological evaluation of aerosol-gel-derived hydroxyapatite coatings with human mesenchymal stem cells”, Biomaterials, 23 (2002) 3985–3990.
[11]S.W.K. Kweh, K.A. Khor and P. Cheang, “An in vitro investigation of plasma sprayed hydroxyapatite (HA) coatings produced with flame-spheroidized feedstock”, Biomaterials, 23 (2002) 775–785.
[12]H.W. Kim, Y.H. Koh, L.H. Li, S. Lee and H.E. Kim, “Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method”, Biomaterials, 25 (2004) 2533–2538.
[13]O. Blind, L.H. Klein, B. Dailey and L. Jordan, “Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6Al-4V substrates”, Dental Materials, 21 (2005) 1017–1024.
[14]R. Zhang and P.X. Ma, “Poly(α-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology”, Journal of Biomedical Materials Research, 44 (1999) 446–455.
[15]K. de Groot, “Bioceramics consisting of calcium phosphate salts”, Biomaterials, 1 (1980) 47–50.
[16]Hanawa. T, “In vivo metallic biomaterials and surface modification”, Materials Science and Engineering: A, 267 (1999) 260–266.
[17]C.J. Chung, H.I. Lin, C.M. Chou, P.Y. Hsieh, C.H. Hsiao, Z.Y. Shi and J.L. He, “Inactivation of Staphylococcus aureus and Escherichia coli under various light sources on photocatalytic titanium dioxide thin film”, Surface and Coatings Technology, 203 (2009) 1081–1085.
[18]C.J. Chung, H.I. Lin and J.L. He, “Antimicrobial efficacy of photocatalytic TiO2 coatings prepared by arc ion plating”, Surface and Coatings Technology, 202 (2007) 1302-1307.
[19]C.J. Chung, H.I. Lin, H.K. Tsou, Z.Y. Shi and J.L. He, “An antimicrobial TiO2 coating for reducing hospital-acquired infection” Journal of Biomedical Materials Research: Part B, 85B (2008) 220–224.
[20]L.H. Li, Y.M. Kong, H.W. Kim, Y.W. Kim, H.E. Kim, S.J. Heo and J.Y. Koak, “Improved biological performance of Ti implants due to surface modification by micro-arc oxidation”, Biomaterials, 25 (2004) 2867–2875.
[21]O.E. Beder and G. Bade, “An investigation of tissue tolerance to titanium metal implants in dogs”, Surgery, 39 (1956) 470–473.
[22]洪茂峻,“電化學沈積二氧化鈦與氫氧基磷灰石複合鍍層之性質與生物相容性研究”,國立高雄應用科技大學機械與精密工程研究所碩士論文,2007。
[23]阮富華,“純鈦上之含鈣磷氧化層及其水熱處理”,國立臺灣大學工學院機械工程學研究所碩士論文,2008。
[24]蘇睿騰,“HAp-TiO2混相鍍層生長於鈦金屬及其骨整合研究”,逢甲大學生醫資訊暨生醫工程碩士學位學程碩士論文,2011。
[25]A.M. Hu, T. Lei, M. Li, C.K. Chang, H.Q. Ling and D.L. Mao, “Preparation of nanocrystals hydroxyapatite/TiO2 compound by hydrothermal treatment”, Applied Catalysis B: Environmental, 63 (2006) 41–44.
[26]S. Pushpakanth, B. Srinivasan, B. Sreedhar and T.P. Sastry, “An in situ approach to prepare nanorods of titania-hydroxyapatite (TiO2-HAp) nanocomposite by microwave hydrothermal technique”, Materials Chemistry and Physics, 107 (2008) 492–498.
[27]S. Ün and C. Durucan, “Preparation of hydroxyapatite-titania hybrid coatings on titanium alloy”, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 90B (2009) 574–583.
[28]X. Hu, H. Shen, K. Shuai, E. Zhang, Y. Bai, Y. Cheng, X. Xiong, S. Wang, J. Fang and S. Wei, “Surface bioactivity modification of titanium by CO2 plasma treatment and induction of hydroxyapatite: In vitro and in vivo studies”, Applied Surface Science, 257 (2011) 1813–1823.
[29]T.M. Lee and E. Chang, “Effect of surface chemistries and characteristics of Ti6Al4V on the Ca and P adsorption and ion dissolution in Hank’s ethylene diamine tetra-acetic acid solution”, Biomaterials, 23 (2002) 2917–2925.
[30]T.M. Lee and E. Chang, “Effect of passivation on the dissolution behavior of Ti6Al4V and vacuum-brazed Ti6Al4V in Hank’s solution Part I Ion release”, Journal of material science: materials in medicine, 10 (1999) 541–548.
[31]L. Ponsonnet, K. Reybier, N. Jaffrezia, V. Comte, C. Lagneau, M. Lissac and C. Martelet, “Relationship between surface properties(roughness, wettability) of titanium and titanium alloys and cell behaviour”, Materials Science and Engineering, 23 (2003) 551–560.
[32]C.H. Ku, D.P. Pioletti, M. Browne and P.J. Gregson, “Effect of different Ti-6Al-4V surface treatments on osteoblasts behaviour”, Biomaterials, 23 (2002) 1447–1454.
[33]E. Eisenbarth, D. Velten, K.S. Meuser, P. Linez, V. Biehl, H. Duschner, J. Breme and H. Hildebrand, “Interactions between cells and titanium surfaces”, Biomolecular Engineering, 19 (2002) 243–249.
[34]K. Derhami, J.F. Wolfaardt, A. Wennerberg, and P.G. Scott, “Quantifying the adherence of fibroblasts to titanium and its enhancement by substrate-attached material”, Journal of Biomedical Material Research, 52 (2000) 315–322.
[35]D.D. Deligianni, N.D. Katsala, P.G. Koutsoukos and Y.F. Missirlis, “Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength”, Biomaterials, 22 (2001) 87–96.
[36]F. Luthen, R. Lange, P. Becker, J. Rychly, U. Beck and J.G.B. Nebe, “The influence of surface roughness of titanium on β1- and β3-integrin adhesion and the organization of fibronectin in human osteoblastic cells”, Biomaterials, 26 (2005) 2423–2440.
[37]盧尚頡,“鈍化具奈米級表面粗糙度的鈦合金對纖維細胞初期黏附之影響”,國立成功大學製造工程研究所碩士論文,2005。
[38]O. Zinger, K. Anselme, A. Denzer, P. Habersetzer, M. Wieland, J. Jeanfils, P. Hardouin and D. Landolt, “Time-independent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography”, Biomaterials, 25 (2004) 2695–2711.
[39]J.B. Park, Biomaterials science and engineering, Plenum press, New York, (1984) 1.
[40]B.D. Ratner, A.S. Hoffman, F. J. Schoen and J.E. Lemons, Biomaterials: An Introduction to Materials in Medicine, Academic Press, New York, (1996) 1–8.
[41]D.W. Hoeppner and V. Chandrasekaran, “Fretting in orthopaedic implants: a review”, Wear, 173 (1994) 189–197.
[42]J.B. Park, Biomaterials: An Introduction, Plenum Press, New York, (1979) 4–5.
[43]K.H. Rateitschak and H.F. Wolf, “Color atlas of dental medicine”, Thieme Medical Publishers, (1995) 11–24.
[44]M.S. Block, J.N. Kent, and L.S. Guerra, “Implants in dentistry”, W.B. Saunders Company, (1997) 45–62.
[45]闕山璋,“骨科生醫合金及人工關節”,工業材料雜誌,78 (1993) 51–56。
[46]周邦彥,“骨科生醫材料之發展與應用”,技術與訓練,27 (2002) 163–171.
[47]G. Buare, Biochemical aspects of osseo-integration, in “CRC Handbook of Bioactive Ceramics”, edited by T. Yamamuro, L.L. Hench and J. Wilson, FL: CRC Press, I 76 (1990) 81–97.
[48]G. Heimke, The aspects and methods of fixation of bone replacement, in “Osseo-Integrated Implant Vol. I Basics, Materials &; Joint Replacement”, edited by G. Heimke, CRC Press Inc., (1990) 1–26.
[49]K. Ohura, T. Nakamura, T. Yamamuro, T. Kokubo, Y. Ebisawa, Y. Kotoura and M. Oka, “Bone-bonding ability of P2O5-free CaOSiO2 glasses”, Journal of Biomedical Material Research, 25 (1991) 357–365.
[50]D.F. Williams and R. Roaf, Implants in Surgery, Philadelphia: Saunders, 1973.
[51]M. Long and H.J. Rack, “Titanium alloys in total joint replacement-a materials science perspective”, Biomaterials, 19 (1998) 1621–1639.
[52]M. Niinomi, “Recent metallic materials for biomedical applications”, Metallurgical and Materials Transcactions A, 33 (2002) 477–486.
[53]R.T. Bothe, L.E. Beaton and H.A. Davenport, “Reaction of bone to multiple metallic implants”, Surg gynecol obstet, 71 (1940) 598–602.
[54]P.I. Brånemark, U. Breine, R. Adell, B.O. Hansson, J. Lindström and A. Ohlsson, “Intraosseous anchorage of dental prostheses. I Experimental studies”, Scandinavian journal of plastic and reconstructive surgery, 3 (1969) 81–100.
[55]F.C. Campbell, Elements of Metallurgy and Engineering Alloys, ASM International, 2008.
[56]M.J. Donachie, Titanium: A technical Guide, 2nd edition, ASM International, 2000.
[57]F.B. Christensen, M. Dalstra, F. Sejling, S. Overgaard and C. Bünger, “Titanium-alloy enhances bone-pedicle screw fixation: Mechanical and histomorphometrical results of titanium-alloy versus stainless steel”, European Spine Journal, 9 (2000) 97–103.
[58]S. Torgersen, G. Moe and R. Jonsson, “Immunocompetent cells adjacent to stainless steel and titanium miniplates and screws“, European Journal of Oral Sciences, 103 (1995) 46–54.
[59]J.S. Suh, E.K. Jeong, K.H. Shin, J.H. Cho, J.B. Na, D.H. Kim and C.D. Han, “Minimizing artifacts caused by metallic implants at MR imaging: experimental and clinical studies”, American Journal of Roentgenology, 171 (1998) 1207–1213.
[60]S. Arens, U. Schlegel, G. Printzen, W.J. Ziegler, S.M. Perren and M. Hansis, “Influence of materials for fixation implants on local infection: an experimental study of steel versus titanium DCP in rabbits”, British Editorial Society of Bone and Joint Surgery, 78B (1996) 647–651.
[61]H.J. Meijerink, C.J.M. van Loon, M.C. de Waal Malefijt, Albert van Kampen, and N. Verdonschot, “A sliding stem in revision total knee arthroplasty provides stability and reduces stress shielding”, Acta Orthopaedica, 81 (2010) 337–343.
[62]C.A. Jr Engh, A.M. Young, C.A. Sr Engh and R.H. Jr Hopper, “Clinical consequences of stress shielding after porous-coated total hip arthroplasty”, Clinical Orthopaedics and Related Research, 417 (2003) 157–163.
[63]S.A. Brown and M.B. Mayor, “The biocompatibility of materials for internal fixation of fractures”, Journal of Biomedical Materials Research, 12 (1978) 67–82.
[64]M. Geetha, A.K. Singh, R. Asokamani and A.K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants – A review”, Progress in Materials Scien ce, 54 (2009) 397–425.
[65]S.G. Steinemann, Corrosion of surgical implants – in vivo and in vitro tests, “Evaluation of Biomaterials – Advances in Biomaterials”, edited by G.D. Winter, J.L. Leray and K. de Goot , Wiley, New York, (1980) 1–34.
[66]H. Kawahara, “Cytotoxicity of implantable metals and alloy”, Bull Japan Inst Metals, 12 (1992) 1033–1039.
[67]E. Eisenbarth, J. Meyle, W. Nachtigall and J. Breme, “Influence of the surface structure of titanium materials on the adhesion of fibroblasts”, Biomaterials, 17 (1996) 1399–1403.
[68]F. A. Müller, M. C. Bottino, L. Miller, V. A. Henriques, U. Lohbauer, A. H. Bressiani and J. C. Bressiani, “In vitro apatite formation on chemically treated (P/M) Ti-13Nb-13Zr”, Dental Materials, 24 (2008) 50–56.
[69]D.L. Kinser and L.L. Hench, “Electrode polarization in alkali silicate glasses”, Journal of the American Ceramic Society, 52 (1969) 638-641.
[70]L.L. Hench, R.J. Splinter, W.C. Allen, and T.K. Greenlee, “Bonding mechanisms at the interface of ceramic prosthetic materials”, Journal of Biomedical Material Research, Symposium, 2 (1971) 117–141.
[71]俞耀庭,生物醫用材料,新文京開發,2004。
[72]X. Liu, Paul K. Chu, C. Ding, “Surface modification of titanium, titanium alloys, and related materials for biomedical applications”, Materials Science and Engineering, R 47 (2004) 49–121.
[73]P. Ducheyne and K. de Groot, “In vivo surface activity of a hydroxyapatite alveolar bone substitute”, Journal of Biomedical Materials Research, 15 (1981) 441–445.
[74]H. Aoki, Medical Applications of Hydroxyapatite, Tokyo: Ishiyaku EuroAmerica Inc., (1994) 13–74.
[75]M. Inagaki and T. Kameyama, “Phase transformation of plasma-sprayed hydroxyapatite coating with preferred crystalline orientation”, Biomaterials, 28 (2007) 2923–2931.
[76]K. de Groot, Bioceramics of calcium phosphate, CRC Press. Inc., Bocaa Ration, Florida, 1983.
[77]A. Ravaglioli and A. Krejewski, Bioceramics: Materials, properties, applications, London: Chapman &; Hall, 1992.
[78]S. Rammelt, M. Neumann, U. Hanisch, A. Reinstorf, W. Pompe, H. Zwipp and A. Biewener, “Osteocalcin enhances bone remodeling around hydroxyapatite/collagen composites”, Journal of Biomedical Materials Research Part A, 73A (2005) 284–294.
[79]A.A. Al-Munajjed, N.A. Plunkett, J.P. Gleeson, T. Weber, C. Jungreuthmayer, T. Levingstone, J. Hammer and F.J. O&;#39;Brien, “Development of a biomimetic collagen-hydroxyapatite scaffold for bone tissue engineering using a SBF immersion technique”, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 90B (2009) 584–591.
[80]M. Textor, C. Sittig, V. Frauchiger, S. Tosatti and D.M. Brunette, Titanium in Medicine, Springer, 2001.
[81]E.P. Meagher and G.A. Lager, “Polyhedral thermal expansion in the TiO2 polymorphs: refinement of the crystal structure of rutile and brookite at high temperature”, Canadian Mineralogist, 17 (1979) 77
[82]V.V. Yakovlev, G. Scarel, C.R. Aita and S. Mochizuki, “Short-range order in ultrathin film titanium dioxide studied by Raman spectroscopy”, Applied Physics Letters, 79 (2000) 1107–1109.
[83]U. Diebold, “The surface science of titanium dioxide”, Surface Science Reports, 48 (2003) 53–229.
[84]K.E. Healy and P. Ducheyne, “Oxidation kinetics of titanium film in model physiologic environments”, Journal of Colloid and Interface Science, 150 (1992) 404–417.
[85]C.M. Lin and S.K. Yen, “Biomimetic growth of apatite on electrolytic TiO2 coatings in simulated body fluid”, Materials Science and Engineering C, 26 (2006) 54–64.
[86]J.M. Wu, F. Xiao, S. Hayakawa, K. Tsuru, S. Takemoto and A. Osaka, “Bioactivity of metallic biomaterials with anatase layers deposited in acidic titanium tetrafluoride solution”, Journal of Materials Science: Materials in Medicine, 14 (2003) 1027–1032.
[87]T. Kokubo, H.M. Kim and M. Kawashita, “Novel bioactive materials with different mechanical properties”, Biomaterials, 24 (2003) 2161–2175.
[88]N. Huang, P. Yang, X. Chen, Y.X. Leng, X.L. Zeng, G.J. Jun, Z.H. Zheng, F. Zhang, Y.R. Chen and X.H. Liu, “Blood compatibility of amorphous titanium oxide films synthesized by ion beam enhanced deposition”, Biomaterials, 19 (1998) 771–776.
[89]T. Sonoda and M. Kato, “Topographic fidelity of Ti-O film deposited onto Ti-6Al-4V alloy substrate to its surface by reactive DC sputtering”, Materials Research Bulletin, 32 (1997) 1419–1426.
[90]Z. Xuebin, H. Minhui and D. Chuanxian, “Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings”, Biomaterials, 21 (2000) 841–849.
[91]陳瑞龍,“電化學沈積HA/TiO2生醫陶瓷鍍膜於Ti-6Al-4V合金製程參數之研究”, 國立中興大學材料科學與工程學系碩士論文,2004。
[92]許清詳,“表面型態與化學組成對骨母細胞在CaP/TiO2/Ti-6Al-4V之影響”,國立中興大學材料科學與工程學系碩士論文,2005。
[93]E. Milella, F. Cosentino, A. Licciulli and C. Massaro, “Preparation and characterisation of titania/hydroxyapatite composite coatings obtained by sol-gel process”, Biomaterials, 22 (2001) 1425–1431.
[94]J. Harle, H.W. Kim, N. Mordan, J.C. Knowles and V. Salih, “Initial responses of human osteoblasts to sol-gel modified titanium with hydroxyapatite and titania composition”, Acta Biomaterialia, 2 (2006) 547–556.
[95]M. Sato, A. Aslani, M.A. Sambito, N.M. Kalkhoran, E.B. Slamovich and T.J. Webster, “Nanocrystalline hydroxyapatite/titania coatings on titanium improves osteoblast adhesion”, Journal of Biomedical Materials Research Part A, 84A (2008) 265–272.
[96]J. Mencik, Mechanics of components with treated or coated surfaces, Kluwer Academic, Dordrecht, 1996.
[97]C.C. Almeida, L.Á. Sena, M. Pinto, C.A. Muller, J.H.C. Lima and G.A. Soares, “In vivo characterization of titanium implants coated with synthetic hydroxyapatite by electrophoresis”, Brazilian Dental Journal, 16 (2005) 78–81.
[98]C.Y. Zheng, S.J. Li, X.J. Tao, Y.L. Hao, R. Yang and L. Zhang, “Calcium phosphate coating of Ti-Nb-Zr-Sn titanium alloy”, Materials Science and Engineering: C, 27 (2007) 824–831.
[99]Y.M. Wang, D.C. Jia, L.X. Guo, T.Q. Lei and B.L. Jiang, “Effect of discharge pulsating on microarc oxidation coatings formed on Ti6Al4V alloy”, Materials Chemistry and Physics, 90 (2005) 128–133.
[100]P. Gupta, G. Tenhundfeld, E.O. Daigle and D. Ryabkov, “Electrolytic plasma technology: Science and engineering-An overview”, Surface and Coatings Technology, 201 (2007) 8746–8760.
[101]F. Deng, W. Zhang, P. Zhang, C. Liu and J. Ling, “Improvement in the morphology of micro-arc oxidised titanium surfaces: A new process to increase osteoblast response”, Materials Science and Engineering: C, 30 (2010) 141–147.
[102]H. Cimenoglu, M. Gunyuz, G.T. Kose, M. Baydogan, F. Uğurlu and C. Sener, “Micro-arc oxidation of Ti6Al4V and Ti6Al7Nb alloys for biomedical applications”, Materials Characterization, 62 (2011) 304–311.
[103]李九龍、呂承恩、蔡維庭、李其涵、楊長志、葛明德,“利用脈衝微弧氧化技術在鈦合金表面披覆氫氧基磷灰石耐蝕性之研究”,第六屆海峽兩岸材料腐蝕與防護研討會論文集,(2008) 829–842。
[104]謝昇龍,“以雙極脈衝微弧氧化法與水熱法在純鈦基板上披覆高附著性與生物活性之膜層”,大同大學材料工程學系研究所碩士論文,2010。
[105]C.J. Chung, R.T. Su, H.J. Chu, H.T. Chen, H.K. Tsou and J.L. He, “Plasma electrolytic oxidation of titanium and improvement in osseointegration”, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 101B (2013) 1023–1030.
[106]W. Ran, Z.H. Tian, B. Guo, D.L. Shu, K.H. Nan and Y.J. Wang, “Superior biocompatibility and osteogenic efficacy of micro-arc oxidation-treated titanium implants in the canine mandible”, Biomedical Materials, 4 (2009) 1–8.
[107]L. Zhu, X. Ye, G. Tang, N. Zhao, Y. Gong, Y. Zhao, J. Zhao and X. Zhang, “Biomimetic coating of compound titania and hydroxyapatite on titanium”, Journal of Biomedical Materials Research, 83A (2007) 1165–1175.
[108]J.Z. Chen, Y.L. Shi, L. Wang, F.Y. Yan and F.Q. Zhang, “Preparation and properties of hydroxyapatite-containing titania coating by micro-arc oxidation”, Materials Letters, 60 (2006) 2538–2543.
[109]J.H. Ni, Y.L. Shi, F.Y. Yan, J.Z.Chen and L. Wang, “Preparation of hydroxyapatite-containing titania coating on titanium substrate by micro-arc oxidation”, Materials Research Bulletin, 43 (2008) 45–53.
[110]G.S. Stein, J.B. Lian, A.J. van Wijnen, J.L. Stein, M. Montecino, A. Javed, S.K. Zaidi, D.W. Young, J.Y. Choi and S.M. Pockwinse, “Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression”, Oncogene, 23 (2004) 4315–4329.
[111]J.E. Aubin, “Bone stem cells”, Journal of Cellular Biochemistry, 72 (1998) 73–82.
[112]E. Seeman and P.D. Delmas, “Bone quality-the material and structural basis of bone strength and fragility”, The New England Journal of Medicine, 354 (2006) 2250–2261.
[113]J.A. Greenwood and J.E. Murphy-Ullrich, “Signaling of de-adhesion in cellular regulation and motility”, Microscopy Research Technique, 43 (1998) 420–432.
[114]J.W. Lee, Y.H. Kim, K.D. Park, K.S. Jee, J.W. Shin and S.B. Hahn, “Importance of integrin 1-mediated cell adhesion on biodegradable polymers under serum depletion in mesenchymal stem cells and chondrocytes”, Biomaterials, 25 (2004) 1901–1909.
[115]J.E. Sundgren, P. Bodö, I. Lundström, “Auger electron spectroscopic studies of the interface between human tissue and implants of titanium and stainless steel”, Journal of Colloid and Interface Science, 110 (1986) 9–20.
[116]M. Ask, J. Lausmaa and B. Kasemo, “Preparation and surface spectroscopic characterization of oxide films on Ti-6Al-4V”, Applied Surface Science, 35 (1989) 283–301.
[117]J. Lausmaa, B. Kasemo, U. Rolander, L.M. Bjursten, L.E. Ericson, L. Rosander and P. Thomsen, “Preparation, surface spectroscopic and electron microscopic characterization of titanium implant materials”, Surface characterization of biomaterials In: Ratner BD, editor. Amsterdam: Elsevier, 1988. 161–174.
[118]J.E. Sundgren, P. Bodo, I. Lundstrom, A. Berggren and S. Hellem, “Auger electron spectroscopic studies of stainless-steel implants”, Journal of Biomedical Materials Research, 19 (1985) 663–671.
[119]D.A. Puleo and A. Nanci, “Understanding and controlling the bone-implant interface”, Biomaterials, 20 (1999) 2311–2321.
[120]K. Kieswetter, Z. Schwartz, D.D. Dean and B.D. Boyan, “The role of implant surface characteristics in the healing of bone”, Critical Reviews in Oral Biology and Medicine, 7 (1996) 329–345.
[121]T. Alvrektsson, P.I. Brånemark, H.A. Hansson and J. Lindstrom, “Osseointegrated titanium implants: requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man”, Acta orthopaedica Scandinavica, 52 (1981) 155–170.
[122]E. Ruoslahti and M.D. Pierschbacher, “New perspectives in cell adhesion: RGD and integrins”, Science, 238 (1987) 491–497.
[123]R. Kornu, W.J. Maloney, M.A. Kelly and R.L. Smith, “Osteoblast adhesion to orthopaedic implant alloys: effects of cell adhesion molecules and diamond-like carbon coating”, Journal of Orthopaedic Research, 14 (1996) 871–877.
[124]N. Sykaras, A.M. Iacopino, V.A. Marker, R.G. Triplett and R.D. Woody, “Implant materials, designs, and surface topographies: their effect on osseointegration. A literature review”, The International Journal of Oral and Maxillofacial Implants, 15 (2000) 675–690.
[125]K. Kieswetter, Z. Schwartz, T.W. Hummert, D.L. Cochran, J. Simpson, D.D. Dean and B.D. Boyan, “Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells”, Journal of Biomedical Materials Research, 32 (1996) 55–63.
[126]G. Cordioli, Z. Majzoub, A. Piattelli and A. Scarano, “Removal torque and histomorphometric investigation of 4 different titanium surfaces: an experimental study in the rabbit tibia”, The International Journal of Oral &; Maxillofacial Implants, 15 (2000) 668–674.
[127]H.J. Kim, S.H. Kim, M.S. Kim, E.J. Lee, H.G. Oh, W.M. Oh, S.W. Park, W.J. Kim, G.J. Lee, N.G. Choi, J.T. Koh, D.B. Dinh, R.R. Hardin, K. Johnson, V.L. Sylvia, J.P. Schmitz and D. D. Dean, “Varying Ti-6Al-4V surface roughness induces different early morphologic and molecular responses in MG63 osteoblast-like cells”, Journal of Biomedical Materials Research Part A, Volume 74A (2005) 366–373.
[128]R.G. Harrison, “The cultivation of tissues in extraneous media as a method of morpho-genetic study”, The Anatomical Record, 6 (1912) 181–193.
[129]A.S.G. Curtis and P. Clark, “The effects of topographic and mechanical properties of materials on cell behavior”, CRC Critical Reviews in Biochemistry, 5 (1990) 343–362.
[130]A.I. Teixeira, G.A. McKie, J.D. Foley, P.J. Bertics, P.F. Nealey and C.J. Murphy, “The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography”, Biomaterials, 27 (2006) 3945–3954.
[131]J.Y. Martin, Z. Schwartz, T.W. Hummert, D.M. Schraub, J. Simpson, J.J. Lankford, D.D. Dean, D.L. Cochran and B.D. Boyan, “Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63)”, Journal of Biomedical Materials Research, 29 (1995) 389–401.
[132]C. Larsson, P. Thomsen , B.O. Aronsson, M. Rodahl, J. Lausmaa, B. Kasemo and L.E. Ericson, “Bone response to surface-modified titanium implants: studies on the early tissue response to machined and electropolished implants with different oxide thicknesses”, Biomaterials, 17 (1996) 605–616.
[133]H.M. Kim, T. Kokubol, S. Fujibayashi, S. Nishiguchi and T. Nakamura, “Bioactive macroporous titanium surface layer on titanium substrate”, Journal of Biomedical Materials Research, 52 (2000) 553–557.
[134]F.A. Akin, H. Zreiqat, S. Jordan , M.B. Wijesundara and L. Hanley, “Preparation and analysis of macroporous TiO2 films on Ti surfaces for bone–tissue implants”, Journal of Biomedical Materials Research, 57 (2001) 588–596.
[135]B.G. Keselowsky, D.M. Collard and A.J. Garcia, “Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation”, The National Academy of Sciences of the USA, 102 (2005) 5953–5957.
[136]H.S. Cheung and D.J. McCarty, “Mitogenesis induced by calcium -containing crystals: role of intracellular dissolution”, Experimental Cell Research, 157 (1985) 63–70.
[137]S.H. Maxian, J.P. Zawadsky and M.G. Dunn, “Effect of Ca/P coating resorption and surgical fit on the bone/implant interface”, Journal of Biomedical Materials Research, 28 (1994) 1311–1319.
[138]M.F. Basle, D. Chappard, F. Grizon, R. Filmon, J. Delecrin, G. Daculsi and A. Rebel, “Osteoclastic resorption of Ca-P biomaterials implanted in rabbit bone”, Calcified Tissue International, 53 (1993) 348–356.
[139]Y.T. Sul, “The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant”, Biomaterials, 24 (2003) 3893–3907.
[140]D.E. MacDonald, N. Deo, B. Markovic, M. Stranick, P. Somasundaran, “Adsorption and dissolution behavior of human plasma fibronectin on thermally and chemically modified titanium dioxide particles”, Biomaterials, 23 (2002) 1269–1279.
[141]D. Buser, N. Broggini, M. Wieland, R.K. Schenk, A.J. Denzer, D.L. Cochran, B. Hoffmann, A. Lussi and S.G. Steinemann, “Enhanced bone apposition to a chemically modified SLA titanium surface”, Journal of Dental Research, 83 (2004) 529–533.
[142]J.V. Zischke, S.M. Hamlet, T. Friis, M.S. Tonetti and S. Ivanovski, “The influence of surface microroughness and hydrophilicity of titanium on the up-regulation of TGFβ/BMP signalling in osteoblasts”, Biomaterials, 32 (2011) 665–671.
[143]A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews and S.J. Dowey, “Plasma electrolysis for surface engineering”, Surface &; Coatings Technology, 122 (1999) 73–93.
[144]Min. S. Kim, J. J. Ryu, Y. M. Sung, “One-step approach for nano-crystalline hydroxyapatite coating on titanium via micro-arc oxidation”, Electrochemistry Communications, 9 (2007) 1886–1891.
[145]D. Wei, Y. Zhou, D. Jia, Y. Wang, “Structure of calcium titanate/titania bioceramic composite coatings on titanium alloy and apatite deposition on their surfaces in a simulated body fluid”, Surface &; Coatings Technology, 201 (2007) 8715–8722.
[146]J. Sun, Y. Han, X. Huang, “Hydroxyapatite coatings prepared by micro-arc oxidation in Ca- and P-containing electrolyte”, Surface and Coatings Technology, 201 (2007) 5655–5658.
[147]C. Ergun, H. Liu, J.W. Halloran, T.J. Webster, “Increased osteoblast adhesion on nanograined hydroxyapatite and tricalcium phosphate containing calcium titanate”, Journal of Biomedical Materials Research, 80A (2007) 990–997.
[148]吳明峰,“以微弧氧化於純鈦金屬上披覆磷灰石陶瓷結構的製程參數研究”,大同大學材料工程研究所碩士論文,2009。
[149]C. Ma, A. Nagai, Y. Yamazaki, T. Toyama, Y. Tsutsumi, T. Hanawa , W. Wang and K. Yamashita, “Electrically polarized micro-arc oxidized TiO2 coatings with enhanced surface hydrophilicity”, Acta Biomaterialia, 8 (2012) 860–865.
[150]N. Ohtsu, K. Sato, K. Saito, K. Asami and T. Hanawa, “Calcium phosphates formation on CaTiO3 coated titanium”, Journal of Materials Science: Materials in Medicine, 18 (2007) 1009–1016.
[151]F. Golestani-Fard, M.R. Bayati, H.R. Zarga, S. Abbasi and H.R. Rezaei, “MAO-preparation of nanocrystalline hydroxyapatite–titania composite films: Formation stages and effect of the growth time”, Materials Research Bulletin, 46 (2011) 2422–2426.
[152]M. Pisarek, A. Roguska, M. Andrzejczuk, L. Marcon, S. Szunerits, M. Lewandowska and M. Janik-Czachor, “Effect of two-step functionalization of Ti by chemical processes on protein adsorption”, Applied Surface Science, 257 (2011) 8196– 8204.
[153]M. Schmidt, “X-ray photoelectron spectroscopy studies on adsorption of amino acids from aqueous solutions onto oxidised titanium surfaces”, Archives of Orthopaedic &; Trauma Surgery, 121 (2001) 403–410.
[154]B.R. Chrcanovic, A.R. Pedrosa and M.D. Martins, “Chemical and topographic analysis of treated surfaces of five different commercial dental titanium implants”, Materials Research, 15 (2012) 372–382.
[155]M. Predota, A.V. Bandura, P.T. Cummings, J.D. Kubicki, D.J. Wesolowski, A.A. Chialvo and M. Machesky, “Electric double layer at the rutile (110) surface. 1. structure of surfaces and interfacial water from molecular dynamics by use of ab initio potentials”, Journal of Physical Chemistry B, 108 (2004) 12049–12060.
[156]D. Wei, Y. Zhou, D. Jia and Y. Wang, “Effect of heat treatment on the structure and in vitro bioactivity of microarc-oxidized (MAO) titania coatings containing Ca and P ions”, Surface &; Coatings Technology, 201 (2007) 8723–8729.
[157]H.J. Robinson, A.E. Markaki, C.A. Collier and T.W. Clyne, “Cell adhesion to plasma electrolytic oxidation (PEO) titania coatings, assessed using a centrifuging technique”, Journal of the Mechanical Behavior of Biomedical Materials, 4 (2011) 2103–2112.
[158]H.T. Chen, C.J. Chung, T.C. Yang, I-P. Chiang, C.H. Tang, K.C. Chen, J.L. He, “Osteoblast growth behavior on micro-arc oxidized β-titanium alloy”, Surface &; Coatings Technology, 205 (2010) 1624–1629.
[159]G.R. Beck Jr., B. Zerler and E. Moran, “Phosphate is a specific signal for induction of osteopontin gene expression”, Pnas, 97 (2000) 8352–8357.
[160]L.H. Li, H.W. Kim, S.H. Lee, Y.M. Kong and H.E. Kim, “Biocompatibility of titanium implants modified by microarc oxidation and hydroxyapatite coating”, Journal of Biomedical Materials Research Part A, 73A (2005) 48–54.
[161]G. He, J. Hu, S.C. Wei, J.H. Li, X.H. Liang and E. Luo, “Surface modification of titanium by nano-TiO2/HA bioceramic coating”, Applied Surface Science, 255 (2008) 442–445.
[162]S. Ma, Y. Yang, D.L. Carnes, K. Kim, S. Park, S.H. Oh, and J.L. Ong, “Effects of dissolved calcium and phosphorous on osteoblast responses”, Journal of Oral Implantology, 31 (2005) 61–67.
[163]J.L. Xu and K.A. Khor, “Chemical analysis of silica doped hydroxyapatite biomaterials consolidated by a spark plasma sintering method”, Journal of Inorganic Biochemistry, 101 (2007) 187–195.
[164]S. Bodhak, S. Bose and A. Bandyopadhyay, “Role of surface charge and wettability on early stage mineralization and bone cell–materials interactions of polarized hydroxyapatite”, Acta Biomaterialia, 5 (2009) 2178–2188.
[165]Z. Li, H.R. Ramay, K.D. Hauch, D. Xiao and M. Zhang, “Chitosan–alginate hybrid scaffolds for bone tissue engineering”, Biomaterials, 26 (2005) 3919–3928.
[166]S.F. El-Amin, H.H. Lu, Y. Khan, J. Burems, J. Mitchell, R.S. Tuan and C.T. Laurencin, “Extracellular matrix production by human osteoblasts cultured on biodegradable polymers applicable for tissue engineering”, Biomaterials, 24 (2003) 1213–1221.
[167]J.M. Schakenraad, H.J. Buscher, C.R. Wildevuur and J.Arends, “The influence of substratum free energy on growth and spreading of human fibroblasts in the presence and absence of serum proteins”, Journal of Biomedical Materials Research, 20 (1986) 773–784.
[168]W. Xue, H.L. Hosick, A. Bandyopadhyay, S. Bose, C. Ding, K.D.K. Luk, K.M.C. Cheung and W.W. Lue, “Preparation and cell–materials interactions of plasma sprayed strontium-containing hydroxyapatite coating”, Surface &; Coatings Technology, 201 (2007) 4685–4693.
[169]Y. Zhang, J.R. Venugopal, A. El-Turki, S. Ramakrishna, B. Su and C.T. Lim, “Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering”, Biomaterials, 29 (2008) 4314–4322.
[170]A. Bigi, E. Boanini, B. Bracci, A. Facchini, S. Panzavolta, F. Segatti and L. Sturba,“Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method”, Biomaterials, 26 (2005) 4085–4089.
[171]P.K. Mattila and P. Lappalainen, “Filopodia: molecular architecture and cellular functions”, Nature Reviews Molecular Cell Biology, 9 (2008) 446–454.
[172]H. Guillou, A. Depraz-Depland, E. Planus, B. Vianay, J. Chaussy, A. Grichine, C. Albigès-Rizo and M.R. Block, “Lamellipodia nucleation by filopodia depends on integrin occupancy and downstream Rac1 signaling”, Experimental cell research, 314 (2008) 478– 488.
[173]E.H. Danen and K.M. Yamada, “Fibronectin, integrins, and growth control”, Journal of Cellular Physiology, 189 (2001) 1–13.
[174]A. Berman, L. Addadi, A. Kvick, L. Leiserowitz, M. Nelson and S.Weiner, “Intercalation of sea urchin proteins in calcite: study of a crystalline composite material”, Science, 250 (1990) 664–667.
[175]H. Tong, J. Hu, W. Ma, G. Zhong, S. Yao and N. Cao, “In situ analysis of the organic framework in the prismatic layer of mollusc shell”, Biomaterials, 23 (2002) 2593–2598.
[176]P. Jayakumar and L.D. Silvio, “Osteoblasts in bone tissue engineering”, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 224 (2010) 1415–1440.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top