(3.230.76.48) 您好!臺灣時間:2021/04/15 01:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝明遠
研究生(外文):Ming-yuan Hsieh
論文名稱:濕式化學法製備Bi2-xZrxO3+x/2粉體應用於X光不透性之研究
論文名稱(外文):Radiopacity application of Bi2-xZrxO3+x/2 powder prepared by wet chemical process
指導教授:陳錦毅陳錦毅引用關係林中魁
口試委員:張棋榕陳錦毅林中魁楊正昌
口試日期:2013-06-25
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:131
中文關鍵詞:三氧礦化物X光不透性氧化鉍氧化鋯
外文關鍵詞:mineral trioxide aggregateradiopacitybismuth oxidezirconia
相關次數:
  • 被引用被引用:1
  • 點閱點閱:164
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
專利申請中,暫不公開
中文摘要 ii
Abstract iv
目錄 vi
表目錄 x
圖目錄 xi
第一章 前言 1
第二章 文獻回顧 3
2.1. 根管治療與三氧礦化物(MTA) 3
2.1.1. 發展現況 3
2.1.2. 輻射顯影 6
2.1.3. X光不透性(質量衰減係數) 8
2.1.4. MTA之生物相容性 11
2.2. MTA材料改質與相關研究 12
2.3. 氧化鉍-氧化鋯系統 18
2.3.1. 氧化鉍基本性質 19
2.3.2. 氧化鋯基本性質 21
2.4. 陶瓷粉體材料合成技術 23
2.4.1. 液相法 24
2.4.2. 沉澱法合成氧化鉍基複合粉體 26
2.4.3. 溶膠凝膠法合成氧化鉍基複合粉體 31
第三章 實驗方法與步驟 40
3.1. 實驗流程 41
3.2. 沉澱法製備Bi2-xZrxO3+x/2粉體 41
3.3. 溶膠凝膠法製備Bi2-xZrxO3+x/2粉體 43
3.4. Bi2-xZrxO3+x/2粉體之特性分析 44
3.4.1. 熱重與示差掃描熱分析(TGA/DSC) 44
3.4.2. X-ray繞射分析(XRD) 44
3.4.3. 傅立葉紅外線轉換光譜(FT-IR) 45
3.4.4. 掃描式電子顯微鏡(SEM) 45
3.4.5. 穿透式電子顯微鏡(TEM) 46
3.4.6. X光不透性(Radiopacity) 46
第四章 結果與討論 48
4.1. 沉澱法製備氧化鉍粉體分析 48
4.1.1. 沉澱法製備氧化鉍粉體之TGA/DSC分析 48
4.1.2. 沉澱法製備氧化鉍粉體之XRD分析 49
4.1.3. 沉澱法製備氧化鉍粉體之FT-IR分析 51
4.1.4. 沉澱法製備氧化鉍粉體之SEM分析 52
4.1.5. 沉澱法製備氧化鉍粉體之TEM分析 53
4.2. 沉澱法製備Bi2-xZrxO3+x/2粉體分析 56
4.2.1. 沉澱法製備Bi2-xZrxO3+x/2粉體之XRD分析 56
4.2.2. 沉澱法製備Bi2-xZrxO3+x/2粉體之SEM分析 60
4.2.3. 沉澱法製備Bi2-xZrxO3+x/2粉體之TEM分析 62
4.3. 溶膠凝膠法製備氧化鉍粉體分析 64
4.3.1. 溶膠凝膠法製備氧化鉍粉體之TGA/DSC分析 64
4.3.2. 溶膠凝膠法製備氧化鉍粉體之XRD分析 66
4.3.3. 溶膠凝膠法製備氧化鉍粉體之FT-IR分析 67
4.3.4. 溶膠凝膠法製備氧化鉍粉體之SEM分析 69
4.3.5. 溶膠凝膠法製備氧化鉍粉體之TEM分析 70
4.4. 溶膠凝膠法製備Bi2-xZrxO3+x/2粉體分析 74
4.4.1. 溶膠凝膠法製備Bi2-xZrxO3+x/2之XRD分析 74
4.4.2. 溶膠凝膠法製備Bi2-xZrxO3+x/2之SEM分析 80
4.4.3. 溶膠凝膠法製備Bi2-xZrxO3+x/2之TEM分析 82
4.5. X光不透性分析 96
4.5.1. 沉澱法製備粉體之X光不透性分析 96
4.5.2. 溶膠凝膠法製備粉體之X光不透性分析 99
第五章 結論 103
第六章 未來展望 105
參考文獻 106
表目錄
表 2 1:質量衰減係數之不同效應與影響因子 10
表 2 2 :象牙質、波特蘭水泥與加入不同顯影材料之X光不透性 17
表 2 3 :各文獻氧化鉍(Bi2O3)相變化溫度 21
表 3 1 :研究使用之藥品規格 40
表 4 1 :沉澱法製備Bi2-xZrxO3+x/2粉體經不同溫度熱處理後之XRD光譜圖分析整理 60
表 4 2 :溶膠凝膠法製備Bi2-xZrxO3+x/2粉體經不同溫度熱處理後之XRD光譜圖分析整理 79
表 4 3 :溶膠凝膠法製備Bi2-xZrxO3+x/2粉體經750°C熱處理後之EDX分析 94
表 4 4 :沉澱法製備Bi2-xZrxO3+x/2之X光不透性分析整理 99
表 4 5 :溶膠凝膠法製備Bi2-xZrxO3+x/2粉體之X光不透性分析整理 102

圖目錄
圖 2 1 :根管治療療程包括(a)細菌或微生物感染牙髓組織、(b)移除牙冠、(c)清創、(d)充填根管並覆上牙冠 3
圖 2 2 :ProRoot® MTA使用於臨床治療(a)因細菌或微生物感染發炎(b)清創並充填ProRoot® MTA(c)反覆治療發炎部位(d)治療後2年觀察 5
圖 2 3 :實驗裝置與鋁階示意圖 7
圖 2 4 :入射光子與物質作用示意圖(a)光電效應、(b)成對產生、(c)瑞利散射與(d)康普吞效應 9
圖 2 5 :不同物質之質量衰減係數 10
圖 2 6 :不同顯影材料在波特蘭水泥中之X光不透性 16
圖 2 7 :添加不同顯影材料在波特蘭水泥中之X光不透性 16
圖 2 8 :不同之顯影材料及改變含量對於矽酸鈣基水泥中之X光不透性 17
圖 2 9 :氧化鉍-氧化鋯部分二元相圖 19
圖 2 10:氧化鉍(Bi2O3)之各相溫度範圍 20
圖 2 11:氧化鋯(ZrO2)之各相溫度範圍 21
圖 2 12 :氧化鋯之不同結晶結構(a)立方晶相、(b)正方晶相及(c)單斜晶相 22
圖 2 13:不同方法製備Bi1.8Zr0.2O3.1之XRD光譜圖(a)反序沉澱法、(b)順序沉澱法及(c)聚丙烯醯胺凝膠法 29
圖 2 14:不同方法製備Bi1.8Zr0.2O3.1之SEM分析(a)反序沉澱法、(b)順序沉澱法及(c)聚丙烯醯胺凝膠法 29
圖 2 15:鈦酸鉍粉體經不同溫度(a)400°C、(b)500°C、(c)600°C及(d)700°C熱處理並持溫2小時後XRD光譜圖 30
圖 2 16:鈦酸鉍粉體經不同溫度(a)400°C、(b)500°C、(c)600°C及(d)700°C熱處理並持溫2小時後之SEM分析 30
圖 2 17:溶膠凝膠法產物及應用 34
圖 2 18:鐵酸鉍粉體於不同氛圍下進行熱處理之XRD光譜圖 35
圖 2 19:將(a)經熱處理後之鐵酸鉍粉體經硝酸(b)0.005、(c)0.05與(d)0.1M過濾後之XRD光譜圖 35
圖 2 20:矽酸鉍粉體經(a)300°C與(b)750°C熱處理後之SEM分析 36
圖 2 21:Bi1-xDxFeO3複合奈米粒子之TEM影像分析(a)x=0、(b)x=0.10與(c)x=0.20 37
圖 2 22:溶膠凝膠法製備鈦酸鉍粉體於不同溫度下熱處理之XRD光譜圖 38
圖 2 23:檸檬酸溶膠凝膠法製備β-Bi2O3粉體並經400°C熱處理之XRD光譜圖 39
圖 2 24:檸檬酸溶膠凝膠法製備β-Bi2O3粉體並經400°C熱處理之TEM分析 39
圖 3 1 :沉澱法實驗流程圖 42
圖 3 2 :溶膠凝膠法實驗流程圖 43
圖 3 3 :X光不透性測試示意圖(a)標準樣品(b)標準樣品數位影像(c)樣品數位影像 47
圖 3 4 :鋁製階梯之灰階值分析 47
圖 4 1 :沉澱法製備氧化鉍粉體之TGA/DSC分析 49
圖 4 2 :沉澱法製備氧化鉍粉體經熱處理前後之XRD光譜圖 50
圖 4 3 :沉澱法製備氧化鉍粉體經熱處理前後之FT-IR光譜圖 51
圖 4 4 :沉澱法製備氧化鉍粉體經熱處理溫度為(a)500與(b)750°C之SEM分析 52
圖 4 5 :沉澱法製備氧化鉍粉體熱處理前之TEM分析,其中影像倍率為(a)15K、(b)100K與(c)800K及(d)選區繞射圖 54
圖 4 6 :沉澱法製備氧化鉍粉體經熱處理500°C後之TEM分析,其中影像倍率為(a)15K、(b)100K與(c)800K及(d)選區繞射圖 55
圖 4 7 :沉澱法製備Bi1.8Zr0.2O3.1粉體經不同溫度熱處理後之XRD光譜圖 58
圖 4 8 :沉澱法製備Bi2-xZrxO3+x/2粉體經750°C熱處理後之XRD光譜圖 59
圖 4 9 :沉澱法製備Bi2-xZrxO3+x/2粉體經800°C熱處理後之XRD光譜圖 59
圖 4 10:沉澱法製備Bi1.8Zr0.2O3.1粉體經不同溫度熱處理後之SEM分析(a)650、(b)700、(c)750與(d)800°C 61
圖 4 11:沉澱法製備Bi2-xZrxO3+x/2粉體經不同溫度熱處理後之SEM分析(a)x=0.2、(b)x=0.4、(c)x=0.6、(d)x=0.8與(e)x=1.0 62
圖 4 12:沉澱法製備Bi1.0Zr1.0O3.5粉體經750°C熱處理後之TEM分析(a)倍率為15K、(b)倍率為100K、(c)倍率為800K影像與(d)選區繞射圖 63
圖 4 13:溶膠凝膠法製備氧化鉍粉體之TGA/DSC分析 66
圖 4 14:溶膠凝膠法製備氧化鉍粉體經熱處理前後之XRD光譜圖 67
圖 4 15:溶膠凝膠法製備氧化鉍粉體經熱處理前後之FT-IR光譜圖 69
圖 4 16:溶膠凝膠法製備氧化鉍粉體經熱處理後之SEM分析(a)500與(b)750°C 70
圖 4 17:溶膠凝膠法製備氧化鉍粉體經熱處理後前之TEM分析(a)倍率為15K、(b)倍率為100K、(c)倍率為800K影像與(d)選區繞射圖 72
圖 4 18:溶膠凝膠法製備氧化鉍粉體經500°C熱處理後之TEM分析(a)倍率為15K、(b)倍率為100K、(c)倍率為800K影像與(d)選區繞射圖 73
圖 4 19:溶膠凝膠法製備Bi1.8Zr0.2O3.1粉體經不同溫度熱處理後之XRD光譜圖 78
圖 4 20:溶膠凝膠法製備Bi2-xZrxO3+x/2粉體經500°C熱處理後之XRD光譜圖 78
圖 4 21:溶膠凝膠法製備Bi2-xZrxO3+x/2粉體經750°C熱處理後之XRD光譜圖 79
圖 4 22:溶膠凝膠法製備Bi1.8Zr0.2O3.1粉體經不同溫度熱處理後之SEM分析(a)500、(b)600、(c)650、(d)700、(e)750與(f)800°C 81
圖 4 23:溶膠凝膠法製備Bi1.8Zr0.2O3.1粉體經不同溫度熱處理後之SEM分析(a)x=0.2、(b)x=0.4、(c)x=0.6、(d)x=0.8與(e)x=1.0 81
圖 4 24:溶膠凝膠法製備Bi1.8Zr0.2O3.1粉體經500°C熱處理後之TEM分析(a)倍率為15K、(b)倍率為100K、(c)倍率為800K影像與(d)選區繞射圖 85
圖 4 25:溶膠凝膠法製備Bi1.8Zr0.2O3.1粉體經700°C熱處理後之TEM分析(a)倍率為15K、(b)倍率為100K、(c)倍率為800K影像與(d)選區繞射圖 86
圖 4 26:溶膠凝膠法製備Bi1.8Zr0.2O3.1粉體經750°C熱處理後之TEM分析(a)倍率為15K、(b)倍率為100K、(c)倍率為800K影像與(d)選區繞射圖 87
圖 4 27:溶膠凝膠法製備Bi1.6Zr0.4O3.2粉體經750°C熱處理後之TEM分析(a)倍率為15K、(b)倍率為100K、(c)倍率為800K影像與(d)選區繞射圖 88
圖 4 28:溶膠凝膠法製備Bi1.4Zr0.6O3.3粉體經500°C熱處理後之TEM分析(a)倍率為15K、(b)倍率為100K、(c)倍率為800K影像與(d)選區繞射圖 91
圖 4 29:溶膠凝膠法製備Bi1.2Zr0.8O3.4粉體經500°C熱處理後之TEM分析(a)倍率為15K、(b)倍率為100K、(c)倍率為800K影像與(d)選區繞射圖 92
圖 4 30:溶膠凝膠法製備Bi1.0Zr1.0O3.5粉體經500°C熱處理後之TEM分析(a)倍率為15K、(b)倍率為100K、(c)倍率為800K影像與(d)選區繞射圖 93
圖 4 31:溶膠凝膠法製備Bi1.8Zr0.2O3.1粉體經750°C熱處理後之EDX分析(a)TEM影像、(b)Bi元素(c)Zr元素與(d)O元素 95
圖 4 32:沉澱法製備Bi1.8Zr0.2O3.1顯影材料經不同溫度熱處理後之X光不透性 97
圖 4 33:沉澱法製備Bi2-xZrxO3+x/2粉體經750°C熱處理後之X光不透性 98
圖 4 34:沉澱法製備Bi2-xZrxO3+x/2粉體經800°C熱處理後之X光不透性 98
圖 4 35:溶膠凝膠法製備Bi1.8Zr0.2O3.1顯影材料經不同溫度熱處理後之X光不透性 101
圖 4 36:溶膠凝膠法製備Bi2-xZrxO3+x/2粉體經500°C熱處理後之X光不透性 101
圖 4 37:溶膠凝膠法製備Bi2-xZrxO3+x/2粉體經750°C熱處理後之X光不透性 102
.S.J. Lee, M. Monsef, and M. Torabinejad, “Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations”, Journal of Endodontics, 19 (1993) 541-544.
.M. Torabinejad, C.U. Hong, F. McDonald, and T.R. Pitt Ford, “Physical and chemical properties of a new root-end filling material”, Journal of Endodontics, 21 (1995) 349-353.
.http://en.wikipedia.org/wiki/Endodontic_therapy
.W.P. Saunders, “A prospective clinical study of periradicular surgery using mineral trioxide aggregate as a root-end filling”, Journal of Endodontics, 34 (2008) 660-665.
.N.K. Sarkar, R. Caicedo, P. Ritwik, R. Moiseyeva, and I. Kawashima, “Physicochemical basis of the biologic properties of mineral trioxide aggregate”, Journal of Endodontics, 31 (2005) 97-100.
.http://dentsplymea.com/sites/default/files/Brochure_ProRoot_MTA.gb_.p df
.T. Dammaschke, H.U. Gerth, H. Zuchner, and E. Schafer, “Chemical and physical surface and bulk material characterization of white ProRoot MTA and two Portland cements”, Dental Materials, 21 (2005) 731-738.
.S. Asgary, M. Parirokh, M.J. Eghbal, and F. Brink, “Chemical differences between white and gray mineral trioxide aggregate”, Journal of Endodontics, 31 (2005) 101-103.
.ProRoot® MTA, Dentsply, Tulsa, OK, USA, 2002.
.C.D. Laghios, B.W. Benson, J.L. Gutmann, and C.W. Cutler, “Comparative radiopacity of tetracalcium phosphate and other root-end filling materials”, International Endodontic Journal, 33 (2000) 311-315.
.H.K. Chng, I. Islam, A.U.J. Yap, Y.W. Tong, and E.T. Koh, “Properties of a new root-end filling material”, Journal of Endodontics, 31 (2005) 665-668.
.G. Danesh, T. Dammaschke, H.U. Gerth, T. Zandbiglari, and E. Schafer, “A comparative study of selected properties of ProRoot mineral trioxide aggregate and two Portland cements”, International Endodontic Journal, 39 (2006) 213-219.
.J. Camilleri and M.G. Gandolfi, “Evaluation of the radiopacity of calcium silicate cements containing different radiopacifiers”, International Endodontic Journal, 43 (2010) 21-30.
.M. Torabinejad, T.R. Ford, H.R. Abedi, S.P. Kariyawasam, and H.M. Tang, “Tissue reaction to implanted root-end filling materials in the tibia and mandible of guinea pigs”, Journal of Endodontics, 24 (1998) 468-471.
.P.J.C. Mitchell, T.R. Pitt Ford, M. Torabinejad, and F. McDonald, “Osteoblast biocompatibility of mineral trioxide aggregate”, Biomaterials, 20 (1999) 167-173.
.International Organization for Standardization ISO 9917-1:2007:Powder/liquid acid-base cements.
.J. Camilleri, F.E. Montesin, K. Brady, R. Sweeney, R.V. Curtis, and T.R. P. Ford, “The Constitution of Mineral Trioxide Aggregate”, Dental Materials, 21 (2005) 297-303.
.K.S. Coomaraswamy, P.J. Lumley, and M.P. Hofmann, “Effect of bismuth oxide radioopacifier content on the material properties of an endodontic Portland cement-based (MTA-like) system”, Journal of Endodontics, 33 (2007) 295-298.
.M. Torabinejad, C.U. Hong, T.R. Pitt Ford, and J.D. Kettering, “Cytotoxicity of four root end filling materials”, Journal of Endodontics, 21 (1995) 489-492.
.M. Torabinejad and T.R. Pitt Ford, “Root end filling materials: A review”, Endodontics &; Dental Traumatology, 12 (1996) 161-178.
.O. Rabin, J.M. Perez, J. Grimm, G. Wojtkiewicz, and R. Weissleder, “An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles”, Nature Materials, 5 (2006) 118-122.
.D. Pan, E. Roessl, J.P. Schlomka, S.D. Caruthers, A. Senpan, M.J. Scott, J.S. Allen, H.Y. Zhang, G. Hu, P.J. Gaffney, E.T. Choi, V. Rasche, S.A. Wickline, R. Proksa, and G.M. Lanza, “Computed Tomography in Color: NanoK-Enhanced Spectral CT Molecular Imaging”, Angewandte Chemie-International Edition, 49 (2010) 9635-9639.
.K.L. Ai, Y.L. Liu, J.H. Liu, Q.H. Yuan, Y.Y. He, and L.H. Lu, “Large-Scale Synthesis of Bi2S3 Nanodots as a Contrast Agent for In Vivo X-ray Computed Tomography Imaging”, Advanced Materials, 23 (2011) 4886-4891.
.S.T. Eliasson and B. Haasken, “Radiopacity of impression materials”, Oral Surg Oral Med Oral Pathology, 47 (1979) 485-491.
.American Dental Association. Specification # 57 for endodontic filling materials. The Journal of the American Dental Association 108(1984) 88.
.International Organization for Standardization ISO 6876:2012:Dental root sealing materials.
.T.L. Higginbotham, “A Comparative Study of the Physical Properties of Five Commonly Used Root Canal Sealers”, Oral Surgery, Oral Medicine, Oral Pathology, 24 (1967) 89-101.
.E.M. Beyer-Olsen and D. Orstavik, “Radiopacity of root canal sealers”, Oral Surg Oral Med Oral Pathology, 51 (1981) 320-328.
.E.M. Beyer-Olsen and D. Orstavik, “Radiopacity of root canal sealers”, Oral Surg Oral Med Oral Pathology, 51 (1981) 320-328.
.D.F. Jackson and D.J. Hawkes, “X-Ray Attenuation Coefficients of Elements and Mixtures”, Physics Reports, 70 (1981) 169-233.
.J.A. Seibert, “X-Ray Imaging Physics for Nuclear Medicine Technologists. Part 1: Basic Principles of X-Ray Production”, Journal of Nuclear Medicine Technology, 32 (2004) 139-147.
.J.A. Seibert and J.M. Boone, “X-Ray Imaging Physics for Nuclear Medicine Technologists. Part 2: X-Ray Interactions and Image Formation”, Journal of Nuclear Medicine Technology, 33 (2005) 3-18.
.M. Torabinejad, C.U. Hong, S.J. Lee, M. Monsef, and T.R. Pitt Ford, “Investigation of Mineral Trioxide Aggregate for Root-End Filling in Dogs”, Journal of Endodontics, 21 (1995) 603-608.
.T.R. Pitt Ford, M. Torabinejad, D.J. McKendry, C.U. Hong, and S.P. Kariyawasam, “Use of Mineral Trioxide Aggregate for Repair of Furcal Perforations”, Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 79 (1995) 756-763.
.J. Camilleri, F.E. Montesin, S. Papaioannou, F. McDonald, and T.R. Pitt Ford, “Biocompatibility of Two Commercial Forms of Mineral Trioxide Aggregate”, International Endodontic Journal, 37 (2004) 699-704.
.K.S. Min, H.S. Chang, J.M. Bae, S.H. Park, C.U. Hong, and E.C. Kim, “The Induction of Heme Oxygenase-1 Modulates Bismuth Oxide-Induced Cytotoxicity in Human Dental Pulp Cells”, Journal of Endodontics, 33 (2007) 1342-1346.
.K.S. Coomaraswamy, P.J. Lumley, R.M. Shelton, and M.P. Hofmann, “Evaluation of Different Radiopacifiers for an MTA-like Dental Cement”, Key Engineering Materials, 361-363 (2008) 885-889.
.E.A. Bortoluzzi, J.M. Guerreiro-Tanomaru, M. Tanomaru, and M. A. H. Duarte, “Radiographic effect of different radiopacifiers on a potential retrograde filling material”, Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontology, 108 (2009) 628-632.
.C.A. de Morais, N. Bernardineli, R.B. Garcia, M.A. Duarte, and D.M. Guerisoli, “Evaluation of Tissue Response to MTA and Portland Cement with Iodoform”, Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontology, 102 (2006) 417-421.
.M.A.H. Duarte, G.D.D. El Kadre, R.R. Vivan, J.M.G. Tanomaru, M. Tanomaru, and I.G. de Moraes, “Radiopacity of Portland Cement Associated With Different Radiopacifying Agents”, Journal of Endodontics, 35 (2009) 737-740.
.G.A. Marín-Bauza, Y.C. Silva-Sousa, S.A. da Cunha, F.J. Abi Rached-Junior, I. Bonetti-Filho, M.D. Sousa-Neto, and C.E.S. Miranda, “Physicochemical Properties of Endodontic Sealers of Different Bases”, Journal of Applied Oral Science, 20 (2012) 455-461.
.Septodont, “Case Studies collection”, 3 (2012).
.謝育賢,”三氧礦化物對骨細胞株之生物學上影響”,中山醫學大學牙科材料研究所碩士論文,2003.
.黃翠賢,”根尖充填劑之生物學效應”,中山醫學大學醫學研究所博士論文,2006.
.T.H. Huang, M.Y. Shie, C.T. Kao, and S. J. Ding, “The Effect of Setting Accelerator on Properties of Mineral Trioxide Aggregate”, Journal of Endodontics, 34 (2008) 590-593.
.王偉全,”研發新型溶膠-凝膠三鈣矽酸鹽於牙髓病治療之應用”,臺灣大學臨床牙醫學研究所碩士論文,2011.
.郭恬君,”探討MTA 組成成分差異對其材料性質及生物相容性之影響”,臺灣大學臨床牙醫學研究所碩士論文,2005.
.李佩穎,”根管逆充填與修復性材料之改良應用”,臺北醫學大學牙醫學系碩士論文,2008.
.J.C. Yang, P.Y. Lee, D.Y. Ji, N.C. Teng, S.C. Hsieh, and S.Y. Lee, “A novel amorphous metal salt for enhancing the manageability of portland cements and its application in dental fields”, Taiwan, No.201021835, 2010.
.E.M. Levin and C.L. McDaniel, “Polymorphism of Bismuth Sesquioxide. II. Effect of Oxide Additions on the Polymorphism of Bi2O3”, JOURNAL OF RESEARCH of the National Bureau of Standards-A. Physics and Chemistry, 68A (1964) 197-206.
.T. Takamori and M.W. Shafer, “Phase transformation kinetics in the system bismuth oxide-zirconia”, Journal of the American Ceramic, 73 (1990) 1453-1455.
.S.L. Sorokina and A.W. Sleight, “New phases in the ZrO2-Bi2O3 and HfO2-Bi2O3 systems”, Materials Research Bulletin, 33 (1998) 1077-1081.
.I. Abrahams, A.J. Bush, C.M. Chan, F. Krok, and W. Wrobel, “Stabilisation and characterisation of a new β-phase in Zr-doped Bi2O3”, Journal of Materials Chemistry, 11 (2001) 1715-1721.
.P. Shuk, H.D. Wiemhofer, U. Guth, W. Gopel, and M. Greenblatt, “Oxide ion conducting solid electrolytes based on Bi2O3”, Solid State Ionics, 89 (1996) 179-196.
.N.M. Sammes, G.A. Tompsett, H. Nafe, and F. Aldinger, “Bismuth Based Oxide Electrolytes - Structure and Ionic Conductivity”, Journal of the European Ceramic Society, 19 (1999) 1801-1826.
.E.M. Levin and C.L. McDaniel, “The system Bi2O3-B2O3”, Journal of the American Ceramic Society, 45 (1962) 355-360.
.G. Gattow and D. Schütze, “Die Kristallsttruker der hochtemperaturemodifikation von wismut (III)-oxid (δ-Bi2O3)”, Zeitschrift für anorganische und allgemeine Chemie, 318 (1962) 176-189.
.G. Gattow and D. Schütze, “Über Wismutoxide. VI. Überein Wismut (III)-oxid mit höherem Sauerstoffgehalt (β-Modifikation)”, Zeitschrift für anorganische und allgemeine Chemie, 328 (1964) 44-68.
.E.M. Levin and C.L. McDaniel, “Heats of Transformations Is Bismuth Oxide by Differential Thermal Analysis”, Journal of research of the national bureau of standards-A, 69A (1965) 237-243.
.C.N.R. Rao, G.V. Subba Rao and S. Ramdas, “Phase transformations and electrical properties of bismuth sesquioxide”, Journal of Physical Chemistry, 73 (1969) 672-675.
.H.A. Harwig and A.G. Gerards, “The polymorphism of bismuth sesquioxide”, Thermochimica Acta, 28 (1979) 121-131.
.S. Block, J.A.H. Da Jornada, and G.J. Piermarini, “Pressure-Temperature Phase Diagram of Zirconia”, Journal of the American Ceramic Society, 68 (1985) 497-499.
.M. Rühle, “Microscopy of Structural Ceramics”, Advanced Materials, 9 (1997) 195-217.
.C.W. Kuo, Y. H. Lee, K.Z. Fung, and M.C. Wang, “Effect of Y2O3 Addition on the Phase Transition and Growth of Ysz Nanocrystallites Prepared by a Sol–Gel Process”, Journal of Non-Crystalline Solids, 351 (2005) 304-311.
.D.L. Porter and A.H. Heuer, “Mechanisms of Toughening Partially Stabilized Zirconia (PSZ)”, Journal of the American Ceramic Society, 60 (1977) 183-184.
.T. Masaki, “Mechanical Properties of Toughened ZrO2-Y2O3 Ceramics”, Journal of the American Ceramic Society, 69 (1986) 638-640.
.K. Noguchi, M. Fujita, T. Masaki, and M. Mizushina, “Tensile Strength of Yttria-Stabilized Tetragonal Zirconia Polycrystals”, Journal of the American Ceramic Society, 72 (1989) 1305-1307.
.C. Piconi and G. Maccauro, “Zirconia as a Ceramic Biomaterial”, Biomaterials, 20 (1999) 1-25.
.Y. Ichikawa, Y. Akagawa, H. Nikai, and H. Tsuru, “Tissue Compatibility and Stability of a New Zirconia Ceramic in Vivo”, The Journal of Prosthetic Dentistry, 68 (1992) 322-326.
.J. Li, Y. Liu, L. Hermansson, and R. Soremark, “Evaluation O Biocompatibility of Various Ceramic Powders with Human Fibroblasts in Vitro”, Clinical Materials, 12 (1993) 197-201.
.I. Dion, L. Bordenave, F. Lefebvre, R. Bareille, Ch Baquey, J. R. Monties, and P. Havlik, “Physico-Chemistry and Cytotoxicity of Ceramics”, Journal of Materials Science: Materials in Medicine, 5 (1994) 18-24.
.V.V. Silva, F.S. Lameiras, and Z.I. Lobato, “Biological Reactivity of Zirconia-Hydroxyapatite Composites”, Journal of Biomedical Materials Research, 63 (2002) 583-590.
.V. Covacci, N. Bruzzese, G. Maccauro, C. Andreassi, G.A. Ricci, C. Piconi, E. Marmo, W. Burger, and A. Cittadini, “In Vitro Evaluation of the Mutagenic and Carcinogenic Power of High Purity Zirconia Ceramic”, Biomaterials, 20 (1999) 371-376.
.J.K. Kim, S.S. Kim, and W.J. Kim, “Sol-Gel Synthesis and Properties of Multiferroic Bifeo3”, Materials Letters, 59 (2005) 4006-4009.
.T.P. Gujar, V.R. Shinde, and C.D. Lokhande, “Spray Pyrolysed Bismuth Oxide Thin Films and Their Characterization”, Materials Research Bulletin, 41 (2006) 1558-1564.
.F. Yan, J. Li, J.J. Zhang, F.Q. Liu, and W.S. Yang, “Preparation of Fe3O4/Polystyrene Composite Particles from Monolayer Oleic Acid Modified Fe3O4 Nanoparticles Via Miniemulsion Polymerization”, Journal of Nanoparticle Research, 11 (2009) 289-296.
.C. Chen, J. Cheng, S.G. Yu, L.J. Che, and Z.Y. Meng, “Hydrothermal Synthesis of Perovskite Bismuth Ferrite Crystallites”, Journal of Crystal Growth, 291 (2006) 135-139.
.L.S. Zhang, W.Z. Wang, J.O. Yang, Z.G. Chen, W.Q. Zhang, L. Zhou, and S.W. Liu, “Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst”, Applied Catalysis a-General, 308 (2006) 105-110.
.E. Bartonickova, J. Cihlar, and K. Castkova, “Microwave-assisted synthesis of bismuth oxide”, Processing and Application of Ceramics, 1 (2007) 29-33.
.Z. Zhang, G.D. Fan, and Y.C. Zheng, “Comparative study of Bi2O3 doped ZrO2 prepared by coprecipitation and polyacrylamide gel process”, Journal of Central South University(Science and Technology), 42 (2011) 2600-2605.
.P. Pookmanee, P. Boonphayak, and S. Phanichphant, “Chemical Synthesis of Bismuth Titanate Microparticles”, Ceramics International, 30 (2004) 1917-1919.
.“Sol-Gel Technology and Products”, http://www.chemat.com, CHEMAT technology, Inc.
.B. Lal, S.K. Patro, and S. Singh, “Nano-Sized Polycrystalline Bismuth Silicon Oxide Powder by Sol-Gel Technique”, Journal of Sol-Gel Science and Technology, 56 (2010) 340-344.
.F.Z. Qian, J.S. Jiang, S.Z. Guo, D.M. Jiang, and W.G. Zhang, “Multiferroic Properties of Bi1-xDyxFeO3 Nanoparticles”, Journal of Applied Physics, 106 (2009) 084312-084316.
.X.F. Du, Y.L. Xu, H.X. Ma, J. Wang, and X.F. Li, “Synthesis and Characterization of Bismuth Titanate by an Aqueous Sol-Gel Method”, Journal of the American Ceramic Society, 90 (2007) 1382-1385.
.M. Anilkumar, R. Pasricha, and V. Ravi, “Synthesis of Bismuth Oxide Nanoparticles by Citrate Gel Method”, Ceramics International, 31 (2005) 889-891.
.E.M. Levin and C.L. McDaniel, “Heats of Transformations Is Bismuth Oxide by Differential Thermal Analysis”, Journal of research of the national bureau of standards-A, 69A (1965) 237-243.
.W.C. Schumb and E.S. Rittner, “Polymorphism of Bismuth Trioxide1”, Journal of the American Chemical Society, 65 (1943) 1055-1060.
.S.R.G. Carrazán, C. Martin, V. Rives, and R. Vidal, “An FT-IR Spectroscopy Study of the Adsorption and Oxidation of Propene on Multiphase Bi, Mo and Co Catalysts”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 52 (1996) 1107-1118.
.V. Fruth, M. Popa, D. Berger, C.M. Ionica, and M. Jitianu, “Phases Investigation in the Antimony Doped Bi2O3 System”, Journal of the European Ceramic Society, 24 (2004) 1295-1299.
.R.L. Shogren, “Modification of Maize Starch by Thermal Processing in Glacial Acetic Acid”, Carbohydrate Polymers, 43 (2000) 309-315.
.W. Jin, I.R. Abothu, R. Wang, and T.S. Chung, “Sol−Gel Synthesis and Characterization of SrFeCo0.5O3.25”, Industrial &; Engineering Chemistry Research, 41 (2002) 5432-5435.
.X.L. Yu and X.Q An, “Enhanced Magnetic and Optical Properties of Pure and (Mn, Sr) Doped BiFeO3 Nanocrystals”, Solid State Communications, 149 (2009) 711-714.
.Q.F. Zhou, H.L. Chan, and C.L. Choy, “Synthesis and Properties of Ferroelectric SrBi2Ta2O9 Powder and Films Prepared by a Sol–Gel Process”, Journal of Non-Crystalline Solids, 254 (1999) 106-111.
.X.G. Sun, “The Investigation of Chemical Structure of Coal Macerals Via Transmitted-Light Ft-Ir Microspectroscopy”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 62 (2005) 557-564.
.M. Yu, J. Lin, and J. Fang, “Silica Spheres Coated with YVO4:Eu3+ Layers Via Sol−Gel Process:  A Simple Method to Obtain Spherical Core−Shell Phosphors”, Chemistry of Materials, 17 (2005) 1783-1791.
.W. Li, “Facile Synthesis of Monodisperse Bi2O3 Nanoparticles”, Materials Chemistry and Physics, 99 (2006) 174-180.
.A.N. Romanov, Z.T. Fattakhova, Y.N. Rufov, and D.P. Shashkin, “Kinetics of the Thermal Desorption of Atomic Oxygen During Transformations BiO2-x -> Beta-Bi2O3 -> Alpha-Bi2O3”, Kinetics and Catalysis, 42 (2001) 275-280.
.B. Tyagi, K. Sidhpuria, B. Shaik, and R. Jasra, “Synthesis of Nanocrystalline Zirconia Using Sol−Gel and Precipitation Techniques”, Industrial &; Engineering Chemistry Research, 45 (2006) 8643-8650.
.郭致瑋,“利用共沉法製備釔安定氧化鋯(YSZ)奈米粉末及特性之研究”,國立高雄應用科技大學機械與精密工程研究所碩士論文,2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔