(3.238.174.50) 您好!臺灣時間:2021/04/18 02:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃呂鈞
研究生(外文):Lu-Chun Huang
論文名稱:混合菌利用有機廢棄物料源生產丁醇之研究
論文名稱(外文):Studies on Biobutanol Production from Organic Waste Using Enriched Mixed Culture
指導教授:山畢斯吳石乙
指導教授(外文):Biswarup Sen, PhD
口試委員:張嘉修朱正永
口試日期:2013-07-10
學位類別:碩士
校院名稱:逢甲大學
系所名稱:綠色能源科技碩士學位學程
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:108
中文關鍵詞:混合菌丁醇醱酵有機廢棄物生質燃料
外文關鍵詞:Mixed culturesButanol fermentationOrganic wastesBiofuel
相關次數:
  • 被引用被引用:1
  • 點閱點閱:158
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
近年来随着原油價格的上漲和人們對全球氣候、環境的關注,發展生質燃料已成為許多國家重對能源安全、應對氣候變化的重要研究指標。故有學者研究生質燃料如乙醇及丁醇,兩者生質燃料相比,丁醇比乙醇可多產生25%的能量,且更適合與汽油混合。現階段丁醇醱酵,皆以純菌為主,其生產價格受限於生產與純化的成本且純菌容易汙染。故本研究找尋多處地區土讓且培養土壤內的混合菌且利用有機廢棄物為料源,探討混合菌醱酵對產丁醇的影響且篩選出最佳產丁醇的混合菌。
本實驗首先利用酸與鹼前處理稻桿不同方式對糖含量的影響,得知利用滅菌釜高溫高壓水解稻桿在3% H2SO4,總糖含量為94.48 ±1.05 g/L,2%HCl,總糖含量為83.9 ±0.97 g/L,由於H2SO4不利於對微生物醱酵作用,故選擇2%HCl水解稻桿作為稻桿水解液(RSH)。其次在醱酵實驗中菌種選擇上,先以批次三階段活化土壤內混合菌且利用葡萄糖和RSH為營養源進行醱酵觀察液相代謝物,針對丁醇含量為優先選擇,初步篩選出四種混合菌(AC5、AC15、AC18和AC20)。再藉由高有機質工業廢水(BW)作為基質進行第二次菌種篩選,得知混合菌(AC18)丁醇產量為1.10 g/L、混合菌(AC20)丁醇產量為4.01 g/L。
在基質為有機廢棄物種類中,以高有機質工業廢水為料源時,混合菌(AC20)丁醇含量為4.06 g/L而丁酸含量為8.22 g/L,由於在無控制pH環境下,pH值過低導致丁酸無法被轉換為丁醇,故利用反應體積為1L批次瓶做批次實驗,在控制pH環境下,混合菌(AC20)丁醇產率為0.20 gbutanol/gsubstrate,總ABE含量為22.74 g/L。
Abstract
The development of biofuels in many countries has becomean important research target due to rise in crude oil prices, environmental concerns, energy security and climate change in recent years. Biofuels such as ethanol and butanol, both derived from biomass, can replace more than 25% of the energy produced, and are more suitable for mixing with gasoline. Butanol fermentation by pure bacteria as opposed to mixed cultureis mainly limited by the price of its production costs and contamination during the production and purification of pure bacteria. In this study, mixed bacterial cultures were developed from many soil samples collected from different areas which were further screened to obtain the best culture that can produce butanol from organic waste (rice straw and beverage wastewater).

Acid and alkali pretreatment of rice straw at different concentrations followed by high temperature and pressure treatment showed a maximumtotal sugar content of 94.48 ± 1.05 g/L by H2SO4 (3%) and 83.9 ± 0.97 g/L by HCl (2%). The 2% HCl-hydrolyzed rice straw (RSH) was used in the further experiments because H2SO4 was not conducive to microbial fermentation. The screening of mixed cultures showed four cultures (AC5, AC15, AC18 and AC20) which were able to ferment glucose and RSH and produce metabolic products (butyric acid and butanol). Among the four mixed cultures AC18 and AC20 were found to produce butanol at a concentration of 1.10 g/L and 4.01 g/L, respectively. Butanolfermentatioin of beverage wastewater by AC 20 showed 4.06 g/L of butanoland 8.22 g/Lbutyric acid at initial pH of 6. The conversion of butyric acid to butanol was not significant due to drop in pH during the fermentation. Therefore further experiments were conducted to control the pH at 12 h of fermentation in a 1 L batch reactor system with the mixed culture AC20. The pH control experiment result showed a maximum butanol yield of 0.20 gbutanol/ghexoses and total ABE content of 22.74 g / L.
摘要 I
致謝 IV
目錄 VI
圖目錄 XIII
表目錄 XV
第一章 緒論 17
1.1 前言 17
1.2 研究目的與動機 18
1.3實驗架構 20
第二章 文獻回顧 21
2.1 農業廢棄物 21
2.1.1稻稈廢棄物處理現況和應用 22
2.1.2 纖維素成分分析 24
2.2纖維素水解 31
2.2.1纖維素溶劑 40
2.3 高有機質工業廢水 42
2.4丁醇 43
2.4.1丁醇之基本性質介紹 43
2.4.2丁醇應用 43
2.4.3丁醇來源 45
2.5丁醇生產及菌體代謝路徑 48
第三章實驗材料及方法 53
3.1 實驗儀器與藥品 53
3.1.1實驗儀器 53
3.2 菌種來源 55
3.2.1培養基組成 56
3.2.2批次實驗裝置 57
3.2.3 連續式實驗裝置 57
3.3 實驗步驟與方法 58
3.3.1 稻桿前處理 58
3.3.2 酸與鹼水解處理 58
3.3.3 土壤菌種馴養及篩選 60
3.3.4 批次產丁醇試驗 61
3.4 分析方法 62
3.4.1 液相分析 62
3.4.2 還原糖濃度分析 62
3.4.3 總糖濃度分析 63
3.4.5 菌相組成分析 64
第四章結果與討論 70
4.1利用酸和鹼前處理對稻桿之影響 71
4.2植種土壤對丁醇產量之影響 78
4.2.1混合菌種選擇 83
4.2.2 探討混合菌利用不同有機廢棄物醱酵產丁醇隨時間之影響 85
4.2.3控制pH對放大批次醱酵產丁醇之影響 91
4.3菌相分析 95
第五章結論與建議 98
5-1結論 98
5-2建議 99
參考文獻 100
參考文獻
Ahmed Z., Banu H., Rahman M. M., Akhter F., and Haque M. S. Microbial Activity on the Degradation of Lignocellulosic Polysaccharides. Journal of Biological Sciences, 10: 993-997, (2001)

Azzam, A.M. Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation. J. Environ. Sci. Heal. 1989, 24, 421-433

Al-Shorgani, N.K., Kalil, M.S., Yusoff, W.M., 2012. Biobutanol production from rice bran and de-oiled rice bran by Clostridium saccharoperbutylacetonicum N1–4. Bioprocess. Biosyst. Eng. doi.

Beguin P. and Lemaire M. The cellulosome:an exocellular, multiprotein
complex specialized in cellulose degradation. Crit. Rev. Biochem. Mol. Biol. 31: 201-236, (1996).

Beguin P. and Anbert J. P. The biological degradation of cellulose. FEMS Microbiol Rev. 13: 25-58, (1994).

Bhat M. K. and Bhat S. Cellulose degrading enzymes and their potential industrial applications. Biotechnol. 15: 583-620, (1997).

Bisaria V. S. and Ghose T. K. Biodegradation of cellulostic materials:
substrates, microorganisms, enzymes and products. Enzyme and Microbial Technology. 3: 90-104, (1981).

Bochman M, Cotton FA, Murillo CA, Wilkinson G. 1999. Advanced inorganic chemistry. USA: Sons, Inc.

Bjerre, A.B.; Olesen, A.B.; Fernqvist, T. Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnol. Bioeng. 1996, 49, 568–577.

Cosgrove D. Cell Walls: Structures, Biogenesis, and Expansion. Plant
Physiology. 409-443, (1998).

Carniti B. P. Fractionation and bioconversion of steam-exploded wheat straw. Bioresource Tcehnology. 39: 165, (1992).

Cao et al., 2009. Acid hydrolysis of
corn stover for biohydrogen production using Thermoanaerobacterium
thermosaccharolyticum W16. Int. J. Hydrogen Energy 34, 7182–7188

Cosgrove D. Cell Walls: Structures, Biogenesis, and Expansion. Plant
Physiology. 409-443, (1998).

Chieh-Lun Cheng et al., 2012. Biobutanol production from agricultural waste by an acclimated mixed bacterial microflora. Applied Energy 100 (2012) 3–9.

Doi R. and Kosugi A. Cellulosomes: plant-cell-wall-degrading enzyme
complexes. Nat. Rev. Microbiol.2: 541-551, (2004).

Desai R; Papoutsakis E.T., Antisense RNAStrategies for Metabolic Engineering of Clostridium acetobutylicum. Appl. Environ Microbiol, 65: 936-945, 1999.

Eskicioglu, C.; Terzian, N.; Kennedy, K.J.; Droste, R.L.; Hamoda, M. Athermal microwave effects for enhancing digestibility of waste activated sludge. Water Res. 2007, 41, 2457-2466.

Ezeji T.C.; Qureshi N., Blaschek H.P., Acetone Butanol Ethanol (ABE)
Production from Concentrated Substrate: Reduction in Substrate Inhibition by Fed-batch Technique and Product Inhibition by Gas Stripping. Appl Microbiol Biotechnol, 63: 653-658, 2004.

Falbe J. Carbon monoxide in organic synthesis. Berlin-Heidelberg-New York:Springer Verlag.1970.

Forster, C.F. The use of ultrasound and gamma-irradiation as pre-treatments for the anaerobic digestion of waste activated sludge at mesophilic and thermophilic temperatures. Bioresource Technol. 2002, 84, 113-118.

Goldstein, T. T. Wood and Agricultural Residues. New York: Academic Press.315-328, (1983).

Garrote, G.; Dominguez, H.; Parajo, J.C. Hydrothermal processing of lignocellulosic materials. Holz Als Roh-und Werkst. 1999, 57, 191-202.

Harris L.M.; Desai R.P.; Welker N.E.; Papoutsakis E.T., Characterization of Recombinant Strains of the Clostridium acetobutylicum Butyrate Kinase Inactivation Mutant: Need for New Phenomenological Models for Solventogenesis and Butanol Inhibition? Biotechnol Bioeng, 67: 1–11, 2000.

Jeffries T. W. Biodegradation of lignin and hemicellulose. London: Kluwer Academic. 1994.

Kumakura, M.; Kojima, T.; Kaetsu, I. Pretreatment of lignocellulosic wastes by combination of irradiation and mechanical crushing. Biomass 1982, 2, 299-308.

Klein G. L. and Snodgrass W. R. Cellulose.Encyclopedia of food science,
food technology and nutrition. 758- 767, 1993.

Karimi, K,. S. Kheradmankinia and M. Taherzadeh. “Conversion of rice straw to sugars by dilute-acid hydrolysis.”Biomass and BioenergyVol.30, p.247~253,2006.

Leschine S.B. Cellulose degradation in anaerobic environments. Annual Review of Microbiology.49: 399-426, (1995).

Lemmel S.A., Mutagenesis in Cl. acetobutylicum. Biotechnol Lett. 7: 711-716. Iotech, 27, 287–291, 1985.

Lee S.Y.; Park J.H.; Jang S.H.; Nielsen L.K.; Kim J.; Jung K.S., Fermentative ButanolProduction by Clostridia. Biotechnology and Bioengineering, 101: 209-228, 2008.

Lynd L. R., Weimer P. J., Zyl W. H. V. and Pretorius I. S. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Review. 66(3): 506-577, 2002.

Liquid- Liquid Extraction. Pak J. Biochem Mol. Biol., 34: 25-29, 2001.

Lee S. Y, Park J.H, Jang S.H, Nielsen L.K., Kim J, Jung K.S , Article first published online: DOI: 10.1002/bit.2200, 2008.

Liu, Z., Ying, Y., Li, F., Ma, C., Xu, P., 2010. Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. J. Ind. Microbiol. Biotechnol. 37, 495 – 501.

McMillan J. D. Pretreatment of lignocellulosic biomass. Himmel M. E. Braker J. O. Overend R. P. (Eds.). Enzymatic conversion of biomass for fuel production. American Chemical Society Washington DC. 292-324, 1994.

Martin, C.; Klinke, H.B.; Thomsen, A.B. Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme Microb. Tech. 2007, 40, 426-432.

Mais, U.; Esteghlalian, A.R.; Saddler, J.N.; Mansfield, S.D. Enhancing the enzymatic hydrolysis of cellulosic materials using simultaneous ball milling. Appl. Biochem. Biotechnol. 2002, 98,815-832.

Mosier N., Wyman C. and Dale B. Features of promising technologies for
pretreatment of lignocellulose biomass. Bioresource Technology. 96: 673-686, 2005.

Mariano AP, Costa CBB, de Angelis DD, Maugeri F, Maciel R.
Optimization strategies based on sequential quadratic programming applies for a fermentation process for butanol production, 2009.

Nasib Qureshi. Butanol production by Clostridium beijerinckii. Part I: Use of acid and enzyme hydrolyzed corn fiber. Bioresource Technology 99 ,5915–592, 2008.

Negro, M.J.; Manzanares, P.; Ballesteros, I.; Oliva, J.M.; Cabanas, A.; Ballesteros, M. Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass. Appl. Biochem. Biotechnol. 2003, 105, 87-100.

Neely, W.C. Factors affecting the pretreatment of biomass with gaseous ozone. Biotechnol. Bioeng. 1984, 26, 59-65.

Palonen, H.; Thomsen, A.B.; Tenkanen, M.; Schmidt, A.S.; Viikari, L. Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood. Appl. Biochem. Biotechnol. 2004, 117, 1-17.

Quratulain S.; Shah M.A., Recovery of Butanol from Fermented Broth by
Sanchez C. Lignocellulosic residues: biodegradation and bioconversion
by fungi. Biotechnol . Adv. 27: 185-194, 2009.

Schell, D.J.; Farmer, J.; Newman, M.; McMillan, J.D. Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor: Investigation of yields, kinetics, and enzymatic digestibilities of solids. Appl. Biochem. Biotechnol. 2003, 105, 69-85.

Sun Y. and Matsuno R., &;#39;&;#39; Hydrolysis of lignocellulosic materials for ethanol production : a review&;quot;, Bioresource Technology, Vol, 83, pp. 1-11 (2002).

Sun Y, Chen J. Hydrolysis of lignocellulosic materials for ethanol
production: a review . Bioresour. Technol. 83: 1-11, 2002.

Schultz, T.P.; McGinnis, G.D.; Biermann, C.J. Similarities and differences in pretreating woody biomass by steam explosion, wet oxidation, autohydrolysis, and rapid steam hydrolysis/continuous extraction. In Proceedings of Annual Symposium on Energy from Biomass and Wastes, Lake Buena Vista, FL, USA, 1984.

Sun Y. and Cheng J. Hydrolysis of lignocellulosic materials for ethanol
production: a review. Bioresource Technology. 83: 1-11, 2002.

Ramos L. P., &;#39;&;#39;The chemistry involved in the steam treatment of lignocellulosic materials,&;#39;&;#39; Quimica Nova, Vol. 26, pp. 863-871. (2003).

Ren, N., Wang, A., Cao, G., Xu, J., Gao, L., 2009. Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnol. Adv. 27, 1051–1060

Subramaniyan S. and Prema P. Biotechnology of microbial xylanases :
enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22: 33-64, 2002.

Sidiras, D.K.; Koukios, E.G. Acid saccharification of ball-milled straw. Biomass 1989, 19, 289-306.

Schmidt, A.; Thomsen, A. Optimization of wet oxidation pretreatment of wheat straw. Bioresource Technol. 1998, 64, 139-151.

Sánchez Carmen,&;quot;Lignocellulosic residues: Biodegradation and
bioconversion by fungi&;quot;,Biotechnology Advances 27,185–194,2009

Sun Y. and Cheng J. Hydrolysis of lignocellulosic materials for ethanol
production: a review. Bioresource Technology. 83: 1-11, 2002.

Tassinari, T.; Macy, C. Differential speed two roll mill pretreatment of cellulosic materials for enzymatic hydrolysis. Biotechnol. Bioeng. 1977, 19, 1321-1330.

Torget, R.; Himmel, M.E.; Grohmann, K. Dilute sulfuric acid pretreatment of hardwood bark. Bioresource Technol. 1991, 35, 239-246.

Taherzadeh, M.J.; Karimi, K. Enzymatic-based hydrolysis processes for ethanol from lignocellulosic materials: A review. BioResources 2007, 2, 707-738.

Thang, V.H., Kanda, K., Kobayashi, G., 2010. Production of acetone-butanol-ethanol (ABE) in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1–4. Appl. Biochem. Biotechnol. 161, 157–170.

Wood T. M. and Bhat M. K. Methods for measuring cellulase activities. Methods Enzymol. 160: 87-112, 1988.

Woodword J. Xylanases: functions, properties and applications. Top. Enzyme. Ferment.Biotechnol. 8: 9-30, 1984.

Welch RW, Rudolph FB, Papoutsakis ET (1989) Purification and characterization of the nadh-dependent butanol dehydrogenase from clostridiumacetobutylicum (atcc 824). Arch Biochem Biophys 273(2):309–318

周仕凱、許梅娟: 新能源 - 生物產丁醇. 科學發展月刊2009
年月,第433期

行政院農業委員會農業統計 (http://agrstat.coa.gov.tw/sdweb/public/common/CommonStatistics.aspx)

劉秀美、蔡馥嚀,廢棄物質源化,安全農業 2010 NO.24

李穩宏、吳大雄、高新,麥稈纖維酶解法產糖預處理過程工藝條件,西北大學學報(自然科學版),27:230-277,1997。

庄新姝、王樹榮、駱仲渙、安宏、岑可法,纖維素低濃度酸水解製取液體燃料試驗研究,浙江大學學報,40: 997-1001,2006。

朱躍釗、盧定強、萬紅貴、賈紅華,木質纖維素預處理技術研究進展,生物加工過程,2:11-16,2004。

石祐禎,稻桿之厭氣醱酵產氫/甲烷,逢甲大學綠色能源科技碩士學位學程碩士論文, 2012年。

紀奕全,混和菌之丁醇發酵,逢甲大學環境工程與科學學系碩士論文,2011年。

任維傑,探討厭氧產氫純菌Clostridum在不同pH下之反應動力機制,國立成功大學環境工程學系研究所。

唐愛民、梁文芷,超音波預處理對速生材木將纖維架構的影響,聲學技術,19:78-85,2000。

陳子逸,預處理方法對纖維物質酵素水解之影響,2010

楊盛行、林正芳、王繼國 ,農廢棄物處理與再利用,2003。

熊犍、葉君、梁文芷,微波對纖維素超分子結構的影響,華南理工大學學 報(自然科學版),28:85-89,2000。

戴上凱.熱穩定性纖維素分解細菌分離株之特性探討與親緣關係的研究,中山大學生物科學研究所博士論文.高雄市,2004。

賴士杰、鄭捷倫、羅泳中、張嘉修 (2010)。纖維酒精之技術開發與展望,化工技術,第18卷,第7期,pp. 89-109。

經濟部能源局油價資訊管理與分析系統,2012。
(http://www.moeaboe.gov.tw/oil102/)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔