(3.235.41.241) 您好!臺灣時間:2021/04/11 21:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃健曜
研究生(外文):Chien-Yao Huang
論文名稱:電泳披覆法製備具高親水性觸媒陽極有效延長PEM燃料電池在低濕度環境之發電效能
論文名稱(外文):Fabrication of Highly Hydrophilic Catalyst Anode by Electrophoretic Deposition to Extend Power Efficiency of PEM Fuel Cells at Low Humidity Conditions
指導教授:駱榮富
指導教授(外文):Rong-Fuh Louh
口試委員:薛康琳宋隆裕駱安亞
口試日期:2013-07-16
學位類別:碩士
校院名稱:逢甲大學
系所名稱:綠色能源科技碩士學位學程
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:121
中文關鍵詞:親水性觸媒氧化矽奈米球氧化矽奈米中空球鉑金屬奈米觸媒低加濕條件長期測試條件質子交換膜燃料電池電泳披覆法
相關次數:
  • 被引用被引用:0
  • 點閱點閱:395
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的乃藉由電泳披覆(EPD)製程配合自製親水性觸媒粉體(Pt/C-SiO2、Pt/C-hSiO2及Pt/C/hSiO2)製得燃料電池陽極端親水性觸媒電極,並透過燃料電池操作於低濕度條件下,進行耐久及穩定性測試。本論文可分為三項研究重點:(1)以10BC碳紙為披覆基材,在EPD電場強度為280 V/cm的條件下,可獲得最佳的Pt/C觸媒披覆率與理想的微結構,透過此EPD所製備的觸媒層電池的電流密度可高達420 mA/cm2(@0.6 V, H2/air)。(2)藉由EPD以摻雜手段製得Pt/C-SiO2及Pt/C-hSiO2觸媒層,其電極中的SiO2及hSiO2比例分別為33wt%及16wt%時有一最佳燃料電池產電效能。低濕度測試條件累積時間達560 hr測試,Pt/C觸媒電極電壓衰退率為15.5%,相較於Pt/C-SiO2及Pt/C-hSiO2電壓衰退率則減緩至4.52及6.77%。(3)以一階段及兩階段高溫碳化熱還原製備Pt/C/hSiO2複合觸媒粉體,其Pt粒徑分別為8.17及10.02 nm,由燃料電池極化曲線結果顯示,電流密度表現僅42 mA/cm2(@0.6 V)。以氫氟酸將hSiO2模板移除,藉此提升觸媒中的三相反應區,其單電池的電流密度可提升至63 mA/cm2(@0.6 V),於濃度極化區時電流密度可高達238 mA/cm2(@0.4 V),證實此一結構可增加氣體燃料的傳遞效率及水分子傳導速率並提升電池產電效能。
The aim of this study is to fabricate membrane electrode assembly (MEA) by using novel hydrophilic catalysts including platinum nanocatalysts with silica nanospheres (Pt/C-SiO2), platinum nanocatalysts with hollow silica nanospheres (Pt/C-hSiO2), pyrolytically synthesized platinum particles mixed with activated carbon and hollow silica nanospheres (Pt/C/hSiO2). The modified catalyst layer with enhanced hydrophilicity was prepared by electrophoresis deposition (EPD) method. Effect of hydrophilic material in the catalyst layer on improvement of proton exchange membrane fuel cell (PEMFC) operating life under low humidity conditions was investigated.
The Pt/C nanocatalysts were also deposited on carbon paper (SGL-10BC) to be gas diffusion electrodes (GDE) of PEMFC by EPD process. A uniform Pt/C layer, which was obtained under EPD’s electrical field of 280 V/cm, was of 420 mA/cm2 current density under I-V test at 0.6 V. The hydrophilic GDE (Pt/C-SiO2, Pt/C-hSiO2) under the I-V test showed the optimal content for SiO2 and hSiO2 for the best performance were 33wt% and 16wt%, respectively., Such hydrophilic GDE does improve MEA’s humidification ability and cell operating stability, which showed its cell voltage decade at 4.52~6.77% through 560 hr continuous operation at the low-humidity conditions, as compared cell voltage decade of normal GDE more than 15.5%. For hydrophilic multilayered Pt/C/hSiO2 composite, where the Pt/C catalyst (size of Pt particles range from 8.17 to 10.02 nm) were produced from one-step and two-step thermally reduced processes, had current density of 42 mA/cm2 from I-V test. When silica templates in Pt/C/hSiO2 composite were removed by HF solution, the triple phase boundaries (TPB) of MEA was boosted and the current density was substantially increased (63 mA/cm2 in ohmic polarization region and 238 mA/cm2 in concentration polarization region) due to the enhanced transfer efficiency of the fuel gases as well as conduction velocity of water molecules.
摘 要 i
ABSTRACT ii
目 錄 iii
圖 目 錄 vii
表 目 錄 xii
第一章緒論 1
1.1 燃料電池簡介 1
1.2 燃料電池的發展概況 2
1.2.1 燃料電池的種類 3
1.3 質子交換膜燃料電池(PEMFC)簡介 6
1.4 低加濕(自增濕)燃料電池發展簡介 13
1.5 電泳披覆技術簡介 15
1.6 研究動機與目的 17
第二章理論基礎與文獻回顧 20
2.1 質子交換膜燃料電池操作原理 20
2.1.1 質子交換膜燃料電池電極熱力學 21
2.1.2 質子交換膜燃料電池極化現象 25
2.2 膜電極組(MEA)的製備方法 27
2.3 低加濕/自增濕觸媒電極操作原理及製備 31
2.4 燃料電池低濕度環境下耐久性測試 35
2.5 電泳披覆法(EPD)操作原理 37
第三章 實驗步驟與方法 40
3.1 實驗架構 40
3.2 PEM燃料電池膜電極組製備方法 44
3.2.1 刮刀塗佈法製備燃料電池Pt/C觸媒層 44
3.2.2 電泳披覆法製備燃料電池Pt/C觸媒層 44
3.2.3 五層膜極組熱壓及單電池組裝 46
3.3 低加濕觸媒電極製備方法 47
3.3.1 親水性Pt/C-SiO2觸媒電極製備方法 47
3.3.2 高親水性Pt/C-hSiO2觸媒電極製備方法 49
3.3.3 多層Pt/C/hSiO2複合觸媒電極製備方法 51
3.4 實驗分析設備與器材 53
3.5 低濕度條件下長時間耐久性測試方法 57
第四章結果與討論 59
4.1 EPD法與傳統刮塗法製備Pt/C觸媒層結構分析 59
4.1.1 EPD電場強度對Pt負載量之影響 59
4.1.2 EPD披覆時間對Pt負載量之影響 61
4.1.3 Pt/C觸媒層之顯微結構 63
4.1.4 Pt/C觸媒電極單電池之極化曲線 65
4.1.5 Pt/C觸媒電極單電池之交流阻抗 66
4.2 製作奈米氧化矽中空球(hSiO2) 69
4.2.1 催化劑與前驅物添加體積比改變氧化矽殼層結構 69
4.2.2 溶劑添加量改變氧化矽殼層結構 70
4.2.3 反應時間改變氧化矽殼層結構 71
4.2.4 煆燒溫度改變氧中空球結構 72
4.3 燃料電池之自製親水性素材分析 75
4.3.1 Zeta表面電位分析 75
4.3.2 BET比表面積分析 76
4.4 Pt/C-SiO2陽極之PEM燃料電池效能分析 77
4.4.1 SiO2奈米球及Pt/C-SiO2觸媒層分析 77
4.4.2 Pt/C-SiO2觸媒層水攝取量及接觸角分析 77
4.4.3 燃料電池極化曲線(IV)及電化學組抗(EIS)性能分析 80
4.5 Pt/C-hSiO2陽極之PEM燃料電池效能分析 85
4.5.1 Pt/C-hSiO2觸媒層分析 85
4.5.2 Pt/C-hSiO2觸媒層水攝取量及接觸角分析 87
4.5.3 燃料電池極化曲線(IV)及電化學組抗(EIS)性能分析 88
4.6 多層Pt/C/hSiO2複合觸媒陽極的PEM燃料電池效能分析 93
4.6.1 一階段製作多層Pt/C/hSiO2複合觸媒 94
4.6.2 兩階段製程製作多層Pt/C/hSiO2複合觸媒 96
4.7 低濕度之燃料電池的長時間耐久性測試 103
4.7.1 陽極Pt/C燃料電池低加濕環境下耐久性測試 104
4.7.2 陽極Pt/C-SiO2燃料電池低加濕環境下耐久性測試 105
4.7.3 陽極 Pt/C-hSiO2燃料電池低加濕環境下耐久性測試 105
4.8 本研究工作未來發展與建議 107
第五章 結 論 110
參考文獻 113
誌 謝 120
作者簡歷 121
[1]The Fuel Cell Today Industial Review, Johnson Matthey PLC, (2011) pp. 1-44.
[2]The Fuel Cell Today Industial Review, Johnson Matthey PLC, (2012) pp. 1-56.
[3]R. O’Hayre, “Fuel Cell Fundamentals”, 全華圖書公司,台北市 (2008).
[4]H. J. Stone, “Economic Analysis of Staionary PEM Fuel Cell Systems”, Battelle Memorial Institute, DOE Review Meeting (2005) FC048.
[5]許桓瑞、陳祈彰、鍾孝評、張文振、曹芳海, “傳統製造業跨入燃料電池產業研發與生產契機之探討”, 工業材料雜誌,271 (2007) 63-71.
[6]趙以諾、王文琳、吳俊星、吳俊達、許桓瑞、薛康琳, “質子交換膜燃料電池技術簡介及進展”, 工業材料雜誌,271 (2009) 84-94.
[7]F. F. Reuss, “Notice sur un nouvel Effet de 1’electricite gavanique”, Mem. Soc. Imp. Natur. Moscou, 2 (1809) 327-37.
[8]S. N. Heavens, “Electrophoretic deposition as a processing route for ceramics”, in Advanced Ceramic Process and Technology, J.G.P. Binner (Ed.), Vol. 1, Noyes Publications (1990) 255-283.
[9]R.W. Powers, “The Electrphoretic Forming of BetaAlumina Ceramic,” J. Electrochem. Soc., 122 [4] (1975) 490-50.
[10]M. Becks, U. Klein and M. Peiniger, “Electrophoretic Deposition of Textured YBa2Cu3O7-x Films on Substrates”, American Institute of Physics, 66 (1989) 5939-5943.
[11]P. S. Nicholson and P. Sarkar, “Electrophoretic Deposition and its use to synthesize Al2O3/ZrO2 Micro-Laminate ceramic/ceramic Composite”, J. of Materials Science, 28 (1993) 6274-6278.
[12]R. Chaim, G. Stark and Gal Or, “Electrochemical ZrO2 and Al2O3 Coatings on SiC Substrates”, J. of Materials Science, 29 (1994) 6241-6248.
[13]Zhitomirsky and L.Gal-Or, “Formation of hollow fibers by electrophoretic deposition”, Materials Letters, 38 (1999) 10-17.
[14]L. Vandeperre, O. Van Der and J. Persello, “Electrophoretic Forming of Silicon Carbide Ceramic”, J. of the Euro. Ceram. Soc., 17 (1996) 373-3376.
[15]F. Harbach and H. Nienburg, “Homogeneus Funtional Ceramic Components through Electrophoretic Deposition from Stable colloidal suspensions. Basic concepts and application to zirconia”, J. of Euro. Ceram. Soc., 18 (1998) 678-683.
[16]J. Van Tassel and C.A. Randall, “Electrophoretic Deposition and Sintering of Thin/Thick PZT Films”, J. of Euro. Ceram. Soc., 19 (1999) 955-958.
[17]L. Vandeperre, O. Van Der, “SiC-Graphite Laminates Shaped by EPD”, Ceramic Bulletin, 77 (1998) 53-58.
[18]M. Gupta and C. Y. Loke, “Micromechanical Modeling of Processing induced damage in Al-SiC Metal Matrix Composites Synthesized Using the Disintegrated Melt Deposition Technique”, Materials Research Bulletin, 34 (1999) 71-79.
[19]Qian Zhou, Peng Dong, “Progress in Three-Dimensionally Ordered Self-Assembly of Colloidal SiO2 Particles”, China Particuology, 1 [3] (2003) 124-130.
[20]R. C. Hayward, D. A. Saville, “Electrophoretic assembly of colloidal crystals with optically tunable micropatterns”, Macmillan Magazines Ltd., 404 (2000) 56-59.
[21]Eugenia Kumacheva, Robert Kori Glding, “Colloid Crystal Growth on Mesoscopically Patterned Surfaces: Effect of Confinement”, Advanced Materials, 14 [3] (2002) 221-224.
[22]Simon O. Lumsdon and Eric W. Kaler, “Dielectrophoretic assembly of oriented and switchable two-dimensional photonic crystals”, Applied physics letters, 82 [6] (2002) 949-952.
[23]Beomseok Kim, Steven L. Tripp, and Alexander Wei, “Self-Organization of Large Gold Nanoparticle Arrays”, American Chemical Society, 123 (2001) 7955-7956.
[24]Yilong Han and David G. Grier, “Electrohydrodynamic Instabillities in Sedimenting Charge-Stabilized Colloid”, Institute for Biophysical Dynamics, and Department of Physics The University of Chicago. (2003).
[25]Fanglin Chen, Meilin Liu, “Preparation of yttria-stabilized zirconia (YSZ)® films on La0.85Sr0.15MnO3 (LSM) and LSM-YSZ substrates using an electrophoretic deposition (EPD) process”, J. European Ceramic Society, 21 (2001) 127-134.
[26]J. Ma, C. Wang, K.W. Peng, “Electrophoretic deposition of porous hydroxyapatite scaffold”, Biomaterials, 24 (2003) 3505-3510.
[27]Bo Chi, Jianbao Li, Xiaozhan Yang, Hong Lin, Ning Wang, “Electrophoretic deposition of ZnCo2O4 spinel and its electrocatalytic properties for oxygen evolution reaction”, Electrochimica Acta, 50 (2005) 2059-2064.
[28]Guodong Zhang, Xiao Chen, Jikuan Zhao, Yongcun Chai, Wenchang Zhuang, Luyan Wang, “Electrophoretic deposition of silver nanoparticles in lamellar lyotropic liquid crystal”, Materials Letters, 60 (2006) 2889-2892.
[29]Y.P. Guo, Y. Zhou, “Nacre coatings deposited by electrophoresis on Ti6Al4V substrates”, Surface &; Coatings Technology, 201 (2007) 7505-7512.
[30]Yitian Peng, Yuanzhong Hu, Hui Wang, “Fabrication of carbon nanotube field emission film by electrophoresis deposition and sintering”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 329 (2008) 161-164.
[31]Bram Neirinck, Jan Fransaer, Omer Van der Biest, Jef Vleugels, “Aqueous electrophoretic deposition in asymmetric AC electric fields (AC-EPD) ”, Electrochemistry Communications, 11 (2009) 57-60.
[32]Tatsumi Ishihara, Keiji Sato, Yukako Mizuhara, and Yusaku Takita, “Preparation of Yttria-Stablized Zirconia Films for Solid Oxide Fuel Cells by Electrophoretic Deposition Method”, Chemistry Letters, 21 (1992) 943-946.
[33]Tatsumi Ishihara, Keiji Sato, and Yusaku Takita, “Electrophoretic Deposition of Y2O3-Stablized ZrO2 Electrolyte Films in Solid Oxide Fuel Cells”, J. Am. Ceram. Soc., 79 [4] (1996) 913-919.
[34]S.D. Thompson, L.R. Jordan, “Platinum electrodeposition for polymer electrolyte membrane fuel cells”, Electrochimica ActaVolume, 46 (2001) 1657-1663.
[35]R.F. Louh, Alex C.C. Chang, Viruser Chen, Dale Wong, “Design of electrophoretically deposited microporous layer/catalysts layer composite structure for power generation of fuel cells”, International Journal of Hydrogen Energy, 33 (2008) 5199-5204.
[36]A.V. Anantaraman, C.L. Gardner, “Studies on ion-exchange membranes. Part 1. Effect of humidity on the conductivity of Nafion”, J. Electroanal. Chem., 414 (1996) 115.
[37]Y. Qiangu, T. Hossein,W. Junxiao, “Investigation of water transport through membrane in a PEM fuel cell by wate balance experiments”, J. Power Sources, 158 (2006), 316-325.
[38]H. Hagihara, H. Uchida and M. Watanabe, “Preparation of highly dispersed SiO2 and Pt particles in Nafion112 for self-humidifying electrolyte membranes in fuel cells”, Electrochim. Acta, 51 (2006), 3979-3985.
[39]C. Bi, H.M. Zhang, Y. Zhang, X.B. Zhu, Y.W. Ma, H. Dai and S.H. Xiao, “Fabrication and investigation of SiO2 supported sulfated zirconia/Nafion self-humidifying membrane for proton exchange membrane fuel cell applications”, J. Power Sources, 184 (2008), 197-203.
[40]D.H. Son, R.K. Sharma, Y.G. Shul and H. Kim, “Preparation of Pt/zeolite-Nafion composite membranes for self-humidifying polymer electrolyte fuel cells”, J. Power Sources, 165 (2007) 733-738.
[41]R.P. Ramasamy, “PEM fuel cell membrane electrode assemblies”, Encyclopedia of Electrochemical Power Sources, 2 (2009) 787-805.
[42]Huaneng Su, Leimin Xu, Huaping Zhu , Yanni Wu, Lijun Yang, Shijun Liao, Huiyu Song, Zhenxing Liang, Viola Birss, “Self-humidification of a PEM fuel cell using a novel Pt/SiO2/C anode catalyst”, International Journal of Hydrogen Energy, 35 (2010) 874-7880.
[43]Insoo Choi, Kyoung G. Lee, Sang Hyun Ahn, Do Hyun Kim, Oh Joong Kwon, Jae Jeong Kim, “Sonochemical synthesis of Pt-deposited SiO2 nanocomposite and its catalytic application for polymer electrolyte membrane fuel cell under low-humidity conditions”, Catalyst Communications, 21 (2012) 82-90.
[44]Jie-Cheng Tsai, Chien-Kung Lin, “Effect of PTFE content in gas diffusion layer based on Nafion/PTFE membrane for low humidity proton exchange membrane fuel cell”, Journal of the Taiwan Institute of Chemical Engineers, 42 (2011) 945-951.
[45]Y.F. Huang, A.M. Kannan, C.S. Chang, C.W. Lin, “Development of gas diffusion electrodes for low relative humidity proton exchange membrane fuel cells”, International Journal of Hydrogen Energy, 36 (2011) 2213-2220.
[46]Naoki Inoue, Makoto Uchida, Masahiro Watanabe, Hiroyuki Uchida, “SiO2-containing catalyst layers for PEFCs operating under low humidity”, Electrochemistry Communications, 16 (2012) 100-102.
[47]Un Ho Jung, Ki Tae Park, Eun Hee Park, Sung Hyun Kim, “Improvement of low-humidity performance of PEMFC by addition of hydrophilic SiO2 particles to catalyst layer”, Journal of Power Sources, 159 (2006) 529-532.
[48]Haolin Tang, Zhaohui Wan, Mu Pan, San Ping Jiang, “Self-assembled Nafion-silica nanoparticles for elevated-high temperature polymer electrolyte membrane fuel cells”, Electrochemistry Communications, 9 (2007) 2003-2008.
[49]Junjie Yuan, Guangbin Zhou, Hongting Pu, “Preparation and properties of Nafion/hollow silica spheres composite membranes”, Journal of Membrane Science, 325 (2008) 742-748.
[50]F. A. de Bruijn, V. A. T. Dam, G. J. M. Janssen, “Review: Durability and Degradation Issues of PEM Fuel Cell Components”, Fuel Cells, 8 [1] (2008) 3-22.
[51]Elena Chalkova, Michael B. Pague, Mark V. Fedkin, David J. Wesolowski, Serguei N. Lvova, “Nafion/TiO2 Proton Conductive Composite Membranes for PEMFCs Operating at Elevated Temperature and Reduced Relative Humidity”, Journal of The Electrochemical Society, 152 [6] (2005) A1035-A1040.
[52]Hua-Neng Su, Li-Jun Yang, Shi-Jun Liao, Qiao Zeng, “Membrane electrode assembly with Pt/SiO2/C anode catalyst for proton exchange membrane fuel cell operation under low humidity conditions”, Electrochimica Acta, 55 (2010) 8894-8900.
[53]V. Senthil Velan, G. Velayutham, Neha Hebalkar, K.S. Dhathathreyan, “Effect of SiO2 additives on the PEM fuel cell electrode performance” International Journal of Hydrogen Energy, 36 [22] (2011) 1-8.
[54]Myounghoon Choun, Sangho Chung, Hongrae Jeon, Sunghyun Uhm, Jaeyoung Lee, “Atomic-layer-deposited TiO2 on cathode gas diffusion layer for low humidity operation in hydrogen fuel cells”, Electrochemistry Communications, 24 (2012) 108-111.
[55]P. Sarkar and P. S. Nicholson, “Electrophoretic Deposition (EPD):Mechanisms, Kinetics, and Application to Ceramics”, J. Am. Ceram. Soc., 79 [8] (1996) 1987-2002.
[56]King-Tsai Jeng, Wan-Min Huang, Ning-Yih Hsu, “Application of low-voltage electrophoretic deposition to fabrication of direct methanol fuel cell electrode composite catalyst layer”, Materials Chemistry and Physics, 113 (2009) 574-578.
[57]Jung-Ho Wee, Kwan-Young Lee, Sung Hyun Kim, “Fabrication methods for low-Pt-loading electrocatalysts in proton exchange membrane fuel cell systems”, Journal of Power Sources, 165 (2007) 667-677.
[58]A.J. Martina, A.M. Chaparroa, L. Dazaa, “Single cell study of electrodeposited cathodic electrodes based on Pt-WO3 for polymer electrolyte fuel cells”, Journal of Power Sources, 196 (2011) 4187-4192.
[59]Alex C.C. Chang, R.F. Louh, Dale Wong, Jessy Tseng, Y.S. Lee, “Hydrogen production by aqueous-phase biomass reforming over carbon textile supported Pt-Ru bimetallic catalysts”, International Journal of Hydrogen Energy, 36 (2011) 8794-8799.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔