(3.227.235.183) 您好!臺灣時間:2021/04/13 22:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉俊敏
研究生(外文):Chun-Min Liu
論文名稱:低耗能木質纖維素酸水解與暗醱酵產氫之研究
論文名稱(外文):Low Energy Consumption for Dark Fermentative Hydrogen Production from Lignocellulosic Biomass Hydrolysate by Acid Pretreatment
指導教授:吳石乙朱正永
口試委員:朱正永林孫基呂晃志
口試日期:2013-07-10
學位類別:碩士
校院名稱:逢甲大學
系所名稱:綠色能源科技碩士學位學程
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:95
中文關鍵詞:稻稈連續式生物產氫纖維素水解綠色能源
外文關鍵詞:Rice strawBiohydrogen productionHydrolysateGreen energy
相關次數:
  • 被引用被引用:3
  • 點閱點閱:373
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
目前地球正面臨了能源危機,但與過去能源危機不同點是,這次將是長期而持續的危機。主要發生問題的原因,首先是人口的急遽增加,人類需求膨脹,以及「城市」和「工業」發展所造成的汙染。隨著人類經濟活動不斷發展,人類的生活變得更加便利也更加進步。但在進步的同時,能源正急遽地減少也危害到我們所居住的環境。因此,開發可替代的再生能源和減少溫室氣體的排放便成為重要的議題。
生物氫氣被視為乾淨且能替代化石燃料的綠色能源。稻稈是台灣常見的農業廢棄物之一,其纖維素結構是由葡萄糖組成,經由水解程序可得到後續生物產氫可利用的小分子糖類。發現稻稈纖維素於濃硫酸(55%)可完全溶解。纖維素水解操作溫度為40℃,水解過後,以氫氧化鈣去除硫酸根離子,並以pH及糖類濃度為操作變因,進行稻稈纖維素水解液生物產氫批次實驗,溫度為37℃,菌體濃度為20% 。結果顯示:氫氣產率和累積產氫量為0.44 mol H2/mol T-sugar and 97.30 ± 0.17 mL/100 mL,糖利用率為81.55%。接著進行連續流實驗,將水力滯留時間(HRT)控制在2時,氫氣產率為1.02 ± 0.03 mol H2/mol hexose,產氫速率平均為16.32 L/L/d。再經由DGGE分析,確定菌體為Clostridium pasteurianum,此菌種有利於生物產氫。
Earth is facing energy crisis, but the past energy crisis, this will be long-term and sustained crisis. The main reasons, the first is the rapid increase of the population, human needs expansion, as well as the pollution caused by the &;quot;city&;quot; and &;quot;industrial&;quot; development. With the continuous development of human economic activities, human life has become more convenient and more progress. In progress at the same time, energy is drastically reduced harm to the environment in which we live. Therefore, the development of alternative renewable energy and reduce greenhouse gas emissions has become an important issue.
Acid treated rice straw hydrolysate was used as a substrate hydrogen production. Concentrated sulphuric acid (55%) was used to completely dissolve the rice straw cellulose at temperature of 40℃. After hydrolysis of rice straw cellulose, calcium hydroxide was used to remove sulphate ions.
Biohydrogen production was evaluated under different initial pH and substrate concentration condition ns at a temperature of 37℃ in a batch mode. The maximum values of hydrogen yield and accumulation of hydrogen were 0.44 mol H2/mol T-sugar and 97.30 ± 0.17 0.17 mL/100 mL with substrate utilization of 81.55% in a batch mode. A mixture of food industry wastewater with rice straw hydrolysate was used as substrate in a continuous mode for the biohydrogen production potential test in this study.
The average hydrogen production yield of 1.02 ± 0.03 mol H2/mol hexose and the hydrogen production rate was 16.32 L/L/d. The presence of bacteria Clostridium pasteurianum which favours the production of hydrogen from of acetic acid and butyric acid was determined by DGGE.
摘要 I
Abstract II
目錄 V
表目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 4
1.3 實驗架構 7
第二章 文獻回顧 9
2.1 纖維素水解發展 9
2.2 生物產氫發展 22
2.3 生物產氫文獻比較 27
第三章 實驗方法 33
3.1 實驗藥品與分析儀器 33
3.1.1 實驗藥品 33
3.1.2 實驗儀器 34
3.2實驗裝置 36
3.2.1纖維素水解裝置 36
3.2.2 連續式生物產氫裝置 36
3.2.3 系統整合 37
3.3 實驗方法與步驟 38
3.3.1 纖維素水解 38
3.3.2批次生物產氫 38
3.3.3連續式生物產氫 40
3.4 分析方法 41
3.4.1 總糖分析 41
3.4.2 菌量分析 41
3.4.3 氣相分析 42
3.4.4 液相分析 43
3.4.5 水中硫酸鹽檢測-濁度法 44
3.4.6 菌相分析 46
第四章 結果與討論 52
4.1纖維素水解 52
4.2纖維素水解液批次產氫 53
4.2.1 pH效應之試驗 53
4.2.2濃度效應之試驗 54
4.3纖維素水解液連續式生物產氫 60
4.4菌相分析結果 64
4.5實驗結果與文獻之比較 65
第五章 結論與建議 67
5.1 結論 67
5.2 建議 68
參考文獻 69
Ahmed Z., Banu H., Rahman M. M., Akhter F., and Haque M. S. Microbial Activity on the Degradation of Lignocellulosic Polysaccharides. Journal of Biological Sciences, 10: p. 993-997, (2001).

A. Hniman, S. O-Thong, P. Prasertsan. Developing a thermophilic hydrogen-producing microbial consortia from geothermal spring for efficient utilization of xylose and glucose mixed substrates and oil palm trunk hydrolysate. International Journal of Hydrogen Energy, 36, 14, p. 8785–8793, (2011).

Alex C.C. Chang, Ying-Hsuan Tu, Ming-Hsiang Huang, Chyi-How Lay, Chiu-Yue Lin. Hydrogen production by the anaerobic fermentation from acid hydrolyzed rice straw hydrolysate. International Journal of Hydrogen Energy, 36, 21, p. 14280–14288, (2011).

A.R. Almarsdottir, A. Tarazewicz, I. Gunnarsson, J. Orlygsson. Hydrogen production from sugar and complex biomass by Clostridium species, AK 14, isolated from Icelandic hot spring. Icel Agric Sci, 23 , p. 61–71, (2010).

Arunsri Fangkum, Alissara Reungsang. Biohydrogen production from sugarcane bagasse hydrolysate by elephant dung: Effects of initial pH and substrate concentration. International Journal of Hydrogen Energy, Volume 36, Issue 14, p. 8687–8696, (2011).

A. Wang, N. Ren, Y. Shi, D.J. Lee. Bioaugmented hydrogen production from microcrystalline cellulose using co-culture –Clostridium acetobuutylicum X9 and Ethanoigenens harbinense B49. International Journal of Hydrogen Energy, 33, p. 912–917, (2008).

Beguin P. and Anbert J. P. The biological degradation of cellulose. FEMS Microbiol Rev. 13: 25 58, (1994).

Beguin P. and Lemaire M. The cellulosome:an exocellular, multiprotein complex specialized in cellulose degradation. Crit. Rev. Biochem. Mol. Biol. 31: p. 201-236, (1996).

Bhat M. K. and Bhat S. Cellulose degrading enzymes and their potential industrial applications. Biotechnol. 15: 583 620, (1997).

Bisaria V. S. and Ghose T. K. Biodegradation of cellulostic materials: substrates, microorganisms, enzymes and products. Enzyme and Microbial Technology. 3: p. 90-104, (1981).

Carniti B. P. Fractionation and bioconversion of steam exploded wheat straw. Bioresource Tcehnology. p. 39: 165, (1992).
Chen-Yeon Chu, Shu-Yii Wu, Chun-Yu Tsai, Chiu-Yue Lin. Kinetics of cotton cellulose hydrolysis using concentrated acid and fermentative hydrogen production from hydrolysate. International Journal of Hydrogen Energy, Volume 36, Issue 14, p. 8743–8750, (2011)

Cheng, C. H., et al., Microbial community structure of a starch feeding fermentative hydrogen production reactor operated under different incubation conditions. International Journal of Hydrogen Energy, 33, 19, p. 5242-5249, (2008).

Chen S. D., Lee K. S., Lo Y. C., Chen W. M., Wu J. F., Lin C. Y., Chang J. S. Batch and continuous biohydrogen production from starch hydrolysate by Clostridium species. International Journal of Hydrogen Energy, 33: p. 1803-1812, (2008).

Chin-Chao Chen, Biswarup Sen, Yeong-Song Chuang, Chia-Jung Tsai, Chyi-How Lay, Effect of effluent recycle ratio in a continuous anaerobic biohydrogen production system. Journal of Cleaner Production. Volume 32, p. 236–243, (2012).

Cosgrove D. J. Cell Walls: Structures, Biogenesis, and Expansion. Plant Physiology. p. 409-443, (1998).

Converse A. O., Kwarteng I. K., Grethlein H. E. and Ooshima H. Kinetics of thermochemical pretreatment of lignocellosic materials. Appl. Microbiol. Biotechnol. 20, 21: p. 63-78, (1989).

C.Z. Liu, X.Y. Cheng. Improved hydrogen production via thermophilic fermentation of corn stover by microwave-assisted acid pretreatment. Int J Hydrogen Energy, 35, 17, p. 8945–8952, (2010).

Das, D. and T.N. Veziroǧlu, Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy, 26, 1: p. 13-28. (2001).

Doi R. H. and Kosugi A. Cellulosomes: plant cell wall degrading enzyme complexes. Nat. Rev. Microbiol.2: p. 541-551, (2004).

G. Cao, N. Ren, A. Wang, D.J. Lee, W. Guo, B. Liu. Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16. International Journal of Hydrogen Energy, 34, 17, p. 7182–7188, (2009)

G. Peixoto, N. K.. Saavedra, M. B. A. Varesche, M. Zaiat, Hydrogen production from soft-drink wastewater in an upflow anaerobic packed-bed reactor. International Journal of Hydrogen Energy, 36, p. 8953–8966, (2011).

Grohmann K., Torget, R. and Himmel M. Optimization of dilute acid pretreatment of biomass. Biotechnol. Bioeng. Symp. 15, p. 59-80, (1985).

Hawkes F. R., Dinsdale R., Hawkes D. L. and Hussy I. Sustainable Fermentative Hydrogen Production: Challenges for Process Optimisation. Int. J. of Hydrogen Energy. 27,11-12, p. 1339-1347, (2002).

Heitz, M., Capek Menard E., Koeberle P. G., Gagne J., Chornet E., Overend R. P., Taylor J. D.and Yu E. Fractionation of Populus tremuloides at the pilot plant scale: optimization of steam explosion pretreatment conditions using the STAKE II technology. Bioresour. Technol. 35: p. 23-32, (1991).

I.K. Kapdan, F. KargiBio hydrogen production from waste materials Enzym. Microb. Technol., 38 (5) (2006), p. 569–582

Knappert H., Grethlein H. and Converse A. Pretreatment of wood for enzymatic hydrolysis. Biotechnol. Bioeng. Symp. 11: p. 67-77, (1980).

Kongjan P, Angelidaki I. Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: Effect of reactor configuration. Bioresource Technology, 101, p. 7789-96.(2010).

Kongjan P, O-Thong S, Kotay M, Min B, Angelidaki I. Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Biotechnology and Bioengineering, 105, p. 899-908, (2010)

Lay J. J., Lee Y. J. and Noike T. Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res 33, p. 2579-2586, (1999).

Linfeng Yang, Jie Cao, Jiangyun Mao, Yongcan JinSodium carbonate–sodium sulfite pretreatment for improving the enzymatic hydrolysis of rice straw. Industrial Crops and Products. Volume 43, p. 711-717, (2013).

Liu D, Zeng R and Angelidaki I. Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Research 40, 11, p. 2230-2236, (2006).

Liu, Yua P, Song X, Qu Y. Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17. International Journal of Hydrogen Energy, 33, p. 2927-2933, ( 2008 ).

Lynd L. R., Weimer P. J., Zyl W. H. V. and Pretorius I. S. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Review. 66, 3, p. 506-577, (2002).
McMillan J. D. Pretreatment of lignocellulosic biomass. Himmel M. E. Braker J. O. Overend R. P. (Eds.). Enzymatic conversion of biomass for fuel production. American Chemical Society Washington DC, p. 292-324, (1994).

Mosier N., Wyman C. and Dale B. Features of promising technologies for pretreatment of lignocellulose biomass. Bioresource Technology, 96, p. 673-686, (2005).

Nathan Mosier, Charles Wyman, Bruce Dale, Richard Elander, Y.Y. Lee, Mark Holtzapple, Michael Ladisch, Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, p. 673-686, (2005).

Nguyen T.A.D., Kim K.R., Kim M.S. and Sim S.J., “Thermophilic hydrogen fermentation from Korean rice straw by Thermotoga neapolitana”, Hydrogen energy, 35, p.13392–13398 (2010).

Niloofar Eslahi, Fatemeh Dadashian, Nahid Hemmati Nejad, Optimization of enzymatic hydrolysis of wool fibers for nanoparticles production using response surface methodology. Advanced Powder Technology, 24,1 , p. 416-426, (2013).

P.C. Hallenbeck, D. Ghosh, Advances in fermentative biohydrogen production: The way forward? Trends Biotechnol., 27, 5, p. 287-297, (2009).

Qiulu Chu, Xin Li, Bin Ma, Yong Xu, Jia Ouyang,Junjun Zhu, Shiyuan Yu, Qiang Yong, Bioethanol production: An integrated process of low substrate loading hydrolysis-high sugars liquid fermentation and solid state fermentation of enzymatic hydrolysis residue, Bioresource Technology, 123, p. 699-702, (2012).

Ramos L. P., Breuil C. and Saddler J. N. Comparison of steam pretreatment of eucalyptus, aspen, and spruce wood chips and their enzymatic hydrolysis. Appl. Biochem. Biotechnol, 34-35, p. 37-48, (1992).

Rana Sagnak, Ilgi K. Kapdan and, Fikret Kargi amos Dark fermentation of acid hydrolyzed ground wheat starch for bio hydrogen production by periodic feeding and effluent removal. International Journal of Hydrogen Energy, p. 9630-9636, (2010).

R. Datar, J. Huang, P.C. Maness, A. Mohagheghi, S. Czernik, E. Chornet. Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. International Journal of Hydrogen Energy, 32, p. 932-939, (2007)

Reith J. H., Wijffels R. H., and B. H., Bio methane &; Bio hydrogen. Energy research Centre of the Netherlands ECN, (2003).

R. Martín-Sampedro, M.E. Eugenio, J.C. García, F. Lopez, J.C. Villar, M.J. Diaz, Steam explosion and enzymatic pre-treatments as an approach to improve the enzymatic hydrolysis of Eucalyptus globulus.Biomass and Bioenergy, 42, p. 97-106, (2012).

Shing-Der Chen, Kuo-Shing Lee, Yung-Chung Lo, Wen-Ming Chen, Ji-Fang Wu, Chiu-Yue Lin, Jo-Shu Chang. Batch and continuous biohydrogen production from starch hydrolysate by Clostridium species. International Journal of Hydrogen Energy, 33, 7, p. 1803–1812, (2008).

S.H. Kim, H.S. Shin. Effects of base-pretreatment on continuous enriched culture for hydrogen production from food waste. International Journal of Hydrogen Energy, 33, 19, p. 5266–5274, (2008).

Sonia Arriaga, Izcoatl Rosas, Felipe Alatriste-Mondragón, Elías Razo-Flores. Continuous production of hydrogen from oat straw hydrolysate in a biotrickling filter. International Journal of Hydrogen Energy, 36, 5, p. 3442-3449, (2011).

Sontaya Khamtib, Pensri Plangklang, Alissara Reungsang. Optimization of fermentative hydrogen production from hydrolysate of microwave assisted sulfuric acid pretreated oil palm trunk by hot spring enriched culture. International Journal of Hydrogen Energy, 36, I21, p. 14204-14216, (2011).

S. Pattra, S. Sangyoka, M. Boonmee, A. Reungsang. Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. International Journal of Hydrogen Energy, 33, p. 5256-5265, (2008).

Sun Y. and Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83, p. 1-11, (2002).

Subramaniyan S. and Prema P. Biotechnology of microbial xylanases : enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22, p. 33-64, (2002).

T.A.D. Nguyen, S.J. Han, J.P. Kim, M.S. Kim, Y.K. Oh, S.J. Sim. Hydrogen production by the hyperthermophilic eubacterium, Thermotoga neapolitana, using cellulose pretreated by ionic liquid. International Journal of Hydrogen Energy, 33, p. 5161–5168, (2008)

Terracciano JS, Schreurs WJA and Kashket ER. Membrance H+ Conductance of Clostridium thermoaceticum and Clostridium acetobutylicum: Evidence for Electrogenic Na+/H+ Antiport in Clostridium thermoaceticum. Appl. Environ. Microbiol. 53, p. 782-786, (1987).

Tuğba Keskin, Laura Giusti, Nuri Azbar, Continuous biohydrogen production in immobilized biofilm system versus suspended cell culture. International Journal of Hydrogen Energy. 37, 2, p. 1418-1424, (2012).

Wang G and Wang DIC. Elucidation of Growth Inhibition and Acetic Acid Production by Clostridium thermoaceticum. Appl. Environ. Microbiol, 47, p. 294-298, (1984).

Wood T. M. and Bhat M. K. Methods for measuring cellulase activities. Methods Enzymol. 160, p.87-112, (1988).

Wu, S. Y., Lin C. N., Chang J. S. Fermentative hydrogen production and bacterial community structure in high rate anaerobic bioreactors containing silicone immobilized and self flocculated sludge. Biotechnology and Bioengineering, 93, 5, p. 934-946, (2006).

Woodword J. Xylanases: functions, properties and applications. Top. Enzyme. Ferment.Biotechnol, 8, p. 9-30, (1984).

X.B. Lu, Y.M. Zhang, Y. Liang, J. Yang, S.T. Zhang, E. Suzuki. Kinetic studies of hemicellulose hydrolysis of corn stover at atmospheric pressure. Kor J Chem Eng, 25, p. 302-307, (2008).

Xiao Wu, Wanying Yao, Jun Zhu, Effect of pH on continuous biohydrogen production from liquid swine manure with glucose supplement using an anaerobic sequencing batch reactor. International Journal of Hydrogen Energy, 35, 13, p. 6592-6599, (2010).

Ya-Chieh Li, Shu-Yii Wu, Chen-Yeon Chu, Hsin-Chieh Huang, Hydrogen production from mushroom farm waste with a two-step acid hydrolysis process. International Journal of Hydrogen Energy, 36, 21, p. 14245-14251, (2011).

Y.C. Lo, M.D. Bai, W.M. Chen, J.S. Chang. Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation strategy. Bioresour Technol, 99, p. 8299-8303, (2008).

Y.C. Lo, G.D. Saratale, W.M. Chen, M.D. Bai, J.S. Chang. Isolation of cellulose-hydrolytic bacteria and applications of the cellulolytic enzymes for cellulosic biohydrogen production. Enzyme Microb Technol, 44, p. 417-425, (2009).

Ying Xue, Hasan Jameel, , Richard Phillips, Hou-min Chang, Split addition of enzymes in enzymatic hydrolysis at high solids concentration to increase sugar concentration for bioethanol production. Journal of Industrial and Engineering Chemistry, 18, 2, p. 707-714, (2012).

Yung-Chung Lo, Wei-Chung Lu, Chun-Yen Chen, Jo-Shu Chang. Dark fermentative hydrogen production from enzymatic hydrolysate of xylan and pretreated rice straw by Clostridium butyricum CGS5. Bioresource Technology, 101, 15, p. 5885-5891, (2010).

Y.T. Fan, Y.H. Zhang, S.F. Zhang, H.W. Hou, B.Z. Ren. Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour Technol, 97, p. 500-505, (2006).

朱躍釗、盧定強、萬紅貴、賈紅華,木質纖維素預處理技術研究進展,生物加工過程,2:第11-16 頁,(2004)。

庄新姝、王樹榮、駱仲渙、安宏、岑可法,纖維素低濃度酸水解製取液體燃料試驗研究,浙江大學學報,40: 第997-1001 頁,(2006)。

李穩宏、吳大雄、高新,麥稈纖維酶解法產糖預處理過程工藝條件,西北大學學報(自然科學版),27:第 230-277 頁,(1997)。

吳耿東、李宏台,全球生質能源應用現況與未來展望,林業研究專訊 Vol.14 No.3第5-9 頁,(2007)。

吳石乙、林祺能、張建勝、陳人豪、邱茗煥、張嘉修,流化床中乙烯醋酸乙醯酯固定化產氫菌之醱酵產氫研究,第28 屆廢水處理技術研討會論文集,(2003)。

吳耿東、李宏台,生質能源-化腐朽為能源,科學發展,第383期,第20-27 頁,(2004)。

柯賢文,未來的氫能經濟,科學發展,第399 期,第68-75 頁,(2006)。

紡拓會,產經資訊處,2009年全球主要纖維素纖維生產國家或地區統計,(2009)。

唐愛民、梁文芷,超音波預處理對速生材木將纖維架構的影響,聲學技術,19:第78-85 頁,(2000)。

張嘉修、李國興、林屏杰、吳石乙、林秋裕,以環境生物技術生產清潔能源-氫氣,化工,第49 卷,第6 期,第85-104 頁,(2002)。

張振維,以蒸煮爆碎前處理法增進狼尾草糖化率的研究,國立台北科技大學碩士論文,(2008)

黃馨卉,稻稈稀硫酸水解對厭氧產氫之影響,逢甲大學綠色能源科技碩士學位學程碩士論文,(2011)。

蔡俊宇,利用棉花纖維素酸化降解糖為基質進行生物產氫,逢甲大學化學工程系碩士論文,(2009)。

熊犍、葉君、梁文芷,微波對纖維素超分子結構的影響,華南理工大學學報(自然科學版),28:第85-89 頁,(2000)。

經濟部能源局,油價資訊管理與分析系統, http://210.69.152.10/oil102/, (2012).

蔡俊宇,利用棉花纖維素酸化降解糖為基質進行稱物產氫,逢甲大學

戴上凱.熱穩定性纖維素分解細菌分離株之特性探討與親緣關係的研究,中山大學生物科學研究所博士論文,高雄市,(2004)。

羅翊瑋,以蒸煮爆碎法對狼尾草進行前處理的研究,國立台北科技大學碩士論文,(2009)。

謝博麒,固定化細胞與懸浮生物反應系統於濃縮糖蜜醱酵廢液生物產氫效益之討論,逢甲大學化學工程系碩士論文,(2010)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔