(3.227.235.183) 您好!臺灣時間:2021/04/20 09:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:韓修齊
論文名稱:聚氨基甲酸酯/耐磨粉體塗佈於三明治網布其機械性質及功能性之研究
論文名稱(外文):A Study on the Mechanical and Functional Properties of the Polyurethane/Abrasion Powders Coated on Spacer Fabrics
指導教授:鄭國彬鄭國彬引用關係
口試委員:李貴琪呂晃志王冰凝
口試日期:2013-07-15
學位類別:碩士
校院名稱:逢甲大學
系所名稱:纖維與複合材料學系
學門:工程學門
學類:紡織工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:180
中文關鍵詞:聚氨基甲酸酯耐磨強度三明治網眼布複合粉體
相關次數:
  • 被引用被引用:3
  • 點閱點閱:383
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:0
本篇主要探討聚氨基甲酸酯/耐磨粉體塗佈於三明治網布表面之耐次數,可分為兩個部分,第一部分為配置塗佈液,於溶劑型及水性聚氨基甲酸酯中分別添加氧化矽、氧化鋯、氧化鋁、碳化矽及回收碳化矽五種粉體,依粉體添加量的不同配置成3%、5%、7%、10%的塗佈液,為維持三明治網布良好透氣性因此使用點狀塗佈的方式,並以EDS檢測確認耐磨粉體已成功塗佈於網布表面。第二部分為:在塗佈液中加入分散劑、改變塗佈量或使用複合粉體並同樣塗佈於網布表面,並進行熱性質測試(TGA、DSC)、物理性質測試(耐磨次數、拉伸次數、撕裂次數)、功能性測試(透氣度)及表觀分析(SEM)。
以多用途耐磨試驗機進行測試並計算改善率,發現WSiC10%的耐磨次數148次(改善率為389.8%)為最高,其次為WRSiC的126次(改善率為315.3%),於WRSiC10%中添加分散劑可使耐磨次數提升至171次(改善率為469.5%)。以透氣測試試驗儀測量三明治網布透氣性發現,無塗佈的三明治網布其透氣度高達280,面狀塗佈會使網布的透氣度大幅降低至130,而點狀塗佈仍能維持網布良好透氣性,添加耐磨粉體、分散劑均無顯著影響,透氣度均在250~260之間。
其主要研究目的在於利用耐磨粉體及水性聚氨基甲酸酯減少慢跑鞋鞋面磨損率及延長慢跑鞋使用耐久度,使用三明治網布取代合成皮能使鞋子穿著起來不悶熱、舒適度提升,點狀塗佈的方式除了能維持網布良好透氣性降低異味產生的機率,更重要的是能有效提升鞋子面料的耐磨次數,未來可應用於慢跑鞋面料、汽車內裝、椅子靠墊、坐墊、帽子面料等。
This study focused on the coating of polyurethane/ abrasive powders on the surface of spacer fabric and it’s devoted to measure the abrasion strength of coated fabric. The experiment can be divided into two parts. The first part is dealing about the preparation of the coating liquid, where the five different powders (SiO2, ZrO2, Al2O3, SiC, RSiC) added into DPU or WPU separately. The coating liquid was prepared with four different concentrations (3%, 5%, 7%, 10%). In order to maintain well air permeability, the coating liquid was applied by using spot coating method. The polyurethane/abrasive powders coating on the surface of spacer fabric was examined by using EDS. In the second part, the dispersant added into coating liquid where the amount of coating changed by using composite powders. The thermal behavior of spacer fabric was analyzed by thermal gravimetric analyzer (TGA), differential scanning calorimeter (DSC). Mechanical properties (abrasion strength, tensile strength and tear strength), air permeability and SEM were also performed for the coated fabric.
Abrasion strength was measured by wearing Tester. The result showed that the abrasion cycle of WSiC10% is 148 times (Improvement rate is 389.8%), which is the highest abrasion strength than other combinations. Addition of the dispersant into WRSiC10% coating liquid can rise abrasion cycle in to 171times (Improvement rate is 469.5%). The air permeability of spacer fabric was examined by air permeability tester. The results showed that the air permeability of uncoated spacer fabric is 280 cm3/cm2/sec. The air permeability of planar coating spacer fabric is reduced to 130 cm3/cm2/sec. Spacer fabric produced by spot coating method can maintain well air permeability (around 250 to 260 cm3/cm2/sec).
The main purpose of this study is to reduce the wear rate and raising the abrasion strength of the surface of jogging shoes. Replacing the synthetic leather by spacer fabric in shoe can make more comfortable to the user. Spot coatings are not only maintaining the good air permeability and also raise the abrasion strength of shoes surface. The spacer fabric coating with polyurethane/ abrasive powders can be applied to jogging shoes, surface of hat or mat .
中文摘要............................................................................................. i

英文摘要............................................................................................. iii

目錄....................................................................................................... V

圖目錄.................................................................................................. Xi
表目錄.................................................................................................. Xvi
第一章 緒論.................................................................................... 1
1.1 實驗背景................................................................................. 1
1.2 實驗動機與目的.......................................................................... 2
第二章 文獻回顧 ............................................................................. 5
2.1 聚氨基甲酸酯高分子材料........................................................... 5
2.1.1 聚氨基甲酸酯之相關研究................................................ 5
2.1.2 聚氨基甲酸酯之原料與化學研究................................... 6
2.1.3 聚氨基甲酸酯之相關性質............................................... 9
2.1.4 聚氨基甲酸酯的相分離型態............................................ 11
2.1.5 聚氨基甲酸酯之FTIR鑑定............................................. 13
2.1.6 水性聚氨基甲酸脂之相關研究........................................ 14
2.1.7 聚氨基甲酸酯之應用........................................................ 17
2.2 三明治針織物之相關研究.......................................................... 18
2.3 耐磨粉體之相關研究.................................................................. 19
2.3.1 氧化鋯 ( Zirconium Oxide).............................................. 19
2.3.2 碳化矽 (Silicon Carbide).................................................. 20
2.3.3 氧化鋁(Aluminium Oxide)............................................. 21
2.3.4 氧化矽(Silicon Oxide)..................................................... 22
2.3.5 回收碳化矽 ( Recycle Silicon Carbide)........................... 23
第三章 理論.................................................................................... 25
3.1 磨耗理論...................................................................................... 25
3.1.1 材料表面磨損機制............................................................ 25
3.1.2 摩擦磨耗 (Abrasion ) ...................................................... 27
3.1.3 表面疲勞磨損 (Surface fatigue) ...................................... 32
3.2 分散劑原理.................................................................................. 34
3.2.1 膠粒體系之穩定性............................................................ 34
3.2.2 DLVO理論........................................................................ 35
3.2.3 分散過程............................................................................ 39
3.3 複合材料機械性質理論............................................................... 43
3.3.1 拉伸強度理論.................................................................... 43
第四章 實驗.................................................................................... 50
4.1 實驗材料..................................................................................... 50
4.1.1 溶劑型聚氨基甲酸酯 ..................................................... 50
4.1.2 水性聚氨基甲酸酯 ......................................................... 50
4.1.3 丁酮 ................................................................................. 50
4.1.4 去離子水 ......................................................................... 51
4.1.5 碳化矽 (Silicon Carbide) ................................................. 51
4.1.6 氧化鋁(Aluminium Oxide)........................................... 51
4.1.7 回收碳化矽 (Recycle Silicon Carbide) ........................... 52
4.1.8 氧化矽(Silicon Oxide)................................................. 52
4.1.9 氧化鋯(Zirconium Oxide)............................................ 52
4.1.10 分散劑 ............................................................................. 53
4.1.11 三明治網布 ..................................................................... 53
4.2 實驗儀器 .................................................................................... 54
4.2.1 電子天秤 ......................................................................... 54
4.2.2 超音波震盪機 .................................................................. 54
4.2.3 磁石攪拌機 ..................................................................... 55
4.2.4 真空烘箱 ......................................................................... 55
4.2.5 行星攪拌脫泡機............................................................... 56
4.2.6 高速均質機 ...................................................................... 56
4.2.7 自動塗佈機 ...................................................................... 57
4.2.8 滾輪式塗佈機 ................................................................. 57
4.3 測試儀器...................................................................................... 58
4.3.1 雷射粒徑分析儀 ............................................................. 58
4.3.2 傅立葉紅外線光譜儀 ..................................................... 59
4.3.3 熱示差掃瞄熱分析儀 ................................................. 60
4.3.4 熱重分析儀 ..................................................................... 60
4.3.5 高解析度穿透式電子顯微鏡 ........................................ 61
4.3.6 萬能拉伸試驗機 ............................................................. 63
4.3.7 透氣試驗儀 ..................................................................... 63
4.3.8 多用途耐磨試驗機 ......................................................... 64
4.4 實驗流程 .................................................................................... 65
4.5 結構鑑定與性質分析 ................................................................. 70
4.5.1 三明治網布之耐磨強度測試 .......................................... 70
4.5.2 耐磨粉體之雷射粒徑分析儀分析 .................................. 72
4.5.3 掃瞄式電子顯微鏡與能量分散光譜分析 ..................... 72
4.5.4 傅立葉紅外線光譜儀之分析 .......................................... 72
4.5.5 熱示差掃瞄熱卡分析儀之測試 ...................................... 73
4.5.6 熱重分析儀之測試 .......................................................... 74
4.5.7 耐磨粉體與分散劑之沉降實驗...................................... 75
4.5.8 拉伸強度測試................................................................... 76
4.5.9 撕裂強度測試................................................................... 78
4.5.10 透氣度測試........................................................................ 79
第五章 結果與討論.................................................................... 80
5.1 粉體粒徑分析.............................................................................. 80
5.1.1 氧化鋁(Aluminium Oxide).......................................... 80
5.1.2 氧化矽(Silicon Oxide)................................................. 81
5.1.3 氧化鋯(Zirconium Oxide)............................................ 82
5.1.4 回收碳化矽 (Silicon Carbide) ......................................... 83
5.1.5 碳化矽 (Recycle Silicon Carbide) ................................... 84
5.2 耐磨次數與改善率之計算方式................................................... 85
5.2.1 耐磨次數表示方式............................................................ 85
5.2.2 耐磨次數改善率之計算方式............................................ 85
5.3 三明治網布之耐磨次數測試...................................................... 87
5.3.1 三明治網布之耐磨次數 (溶劑型聚氨基甲酸酯) .......... 87
5.3.2 網布耐磨次數之改善率 (溶劑型聚氨基甲酸酯) .......... 93
5.3.3 三明治網布之耐磨次數 (水性聚氨基甲酸酯) .............. 95
5.3.4 網布耐磨次數之改善率 (水性聚氨基甲酸酯) .............. 99
5.3.5 溶劑型聚氨基甲酸酯(DPU)與水性聚氨基甲酸酯
(WPU)耐磨次數及改善率之比較.................................... 101
5.4 不同塗佈量對耐磨次數之影響................................................... 103
5.5 添加分散劑................................................................................... 106
5.5.1 粉體懸浮穩定性之試驗.................................................... 106
5.5.2 添加分散劑對耐磨次數之影響........................................ 110
5.6 複合粉體對耐磨次數之影響...................................................... 113
5.7 透氣度測試 ................................................................................ 115
5.8 機械性質測試.............................................................................. 121
5.9 熱性質測試................................................................................... 128
5.9.1 熱示差掃描熱卡分析儀之測試 (DSC) .......................... 128
5.9.2 熱重分析儀之測試 ( TGA ) ............................................ 130
5.10 化學性質測試 ............................................................................. 134
5.10.1 傅立葉紅外線光譜儀之分析 ( FTIR ) ........................... 134
5.10.2 能量散佈光譜儀 (EDS) .................................................. 137
5.11 掃描式電子顯微鏡表觀分析 (SEM) ......................................... 139
第六章 結論.................................................................................... 146
第七章 建議.................................................................................... 153
參考文獻............................................................................................. 154
1.馬業文,織襪工業調查報告,經濟部工業局,台北,1976。
2.Anand, S. Spacers Fabrics At the Technical Frontier. Knitting International, 2003, P.38-41.
3.Frontini, M.G. Usefulness of childhood non-high density lipoprotein cholesterol levels versus other lipoprotein measures in predicting adult subclinical atherosclerosis: the Bogalusa Heart Study. Pediatrics, 2008, P.924.
4.De Araujo, M. Hong, H., Fangueiro, R, and Ciobanu, O. Weft knitting fabric design for technical applications. Textile Asia, 2002, P.23-27.
5.Onal, L. Structure and applications of 3D Knitted Spacer Fabrics. Istanbul Textile Congress, 2004.
6.Haskell, W.L., et al., Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation, 2007, P.1081.
7.Bohm. C. Rib Rachel For Spacer Fabrics. Knitting International, 2002, P.38-39.
8.邱啟潤、何啟功,高雄地區上班族生活型態、心血管疾病危險因子與健康狀況之研究,高雄醫學科學雜誌,P.321-329,2005。
9.張曉雷,李海燕,楊德瑞,三明治間隔織物之應用及相關研究,中國皮革,P.5-7,2003。
10.王亞錦,人工皮革發展趨勢與鞋材皮革現況報導,國立臺灣高雄應用科技大學,P.61-67,1999。
11.杜桂林,工業用紡織品水性樹脂塗佈應用,P.8-9,2003。
12.T. K. Chen, T. S. Shieh, J. Y. Chui, Macromolecules, 31, P.1312, 1998.
13.R. W. Seymour, S. L. Cooper, Macromolecules, P.48, 1973.
14.C. P. Christenson, M. A. Harthcock, M. D. Meadows, H. L. Spell, W. L. Howard, M. W. Creswick, R. E. Guerra, R. B. Turner, Polymer Science, Part B: Polymer Physics, P.24, 1986.
15.Y. Li, T. Gao, J. Liu, K. Linliu, C. R. Desper, B. Chu, Macromolecules, P.25, 1992.
16.林建中著,高分子材料性質與應用,高立圖書,P.88-91,2003。
17.W. P. Yang, C. W. Macosko, S. T. Wellinghoff, Polymer, P.27, 1986.
18.Z. S. Petrovie, Z. Zavargo, J.H. Flyn, W. J. Macknight, Applied Polymer Science, P.51, 1994.
19.J. A. Miller, S. BL Lin, K. S. Hwang, K. K. S. Wu, P. E. Gibson, S. L. Cooper, Macromolecules, P.18-32, 1985.
20.B. T. Boymer, T. L. Joseph, Macromolecules, P.48, 1987.
21.N. S. Schneider, R. W. Matton, Polymer Engineering and Science, P.19, 1979.
22.C. M. Brunette, S.L. Hsu, M. Rossman, W.J. Macknight, N.S. Schneider, Polymer Engineering and Science, P.163, 1981.
23.T. A. Speckhard, P. E. Gibson, S.L Cooper, V. S. C. Chang, J. P. Kennedny, Polymer, P.26, 1985.
24.S. B. Lin, K. S. Hwang, G. S. Wn , S. Y. Tsag, and S. L. Cooper , Material Science & Engineering, P.49-53, 1987.
25.傅明源、孫酣經,“聚氨酯彈性體及其應用”,化學工業出版社,P.8-23,1991。
26.D. J. Meier, Journal of Macromolecules Science Physical, P.181 1980.
27.C.B. Wang, S.L. Cooper, Macromolecules, P.16, 1983.
28.K. Nakaama, T. Ino, I. Matsubara, Polymer Science, Part B: Polymer Physics, P.475, 1964.
29.K. Nakayama, T. Ino, I. Matsubara, Macromolecular Science. A, Chemistry, P.105, 1969.
30.林政助,紡織用水性PU樹脂合成及應用,經濟部工業局,水性樹酯研討會,2000。
31.C.S.Schollenberger, Polyurethabe Technology, Ed, Bruin, P.F., Science Publishers, New York, P197, 1979.
32.S.B.Clough, N.S.Schenider, Macromolecules, Science-Phys., P.553, 1968.
33.D.Nissen, and R.A.Markovs, Elastomers and Platics, P.196, 1983.
34.C.S.Schollenberger, F.D.Stewart. Advances in Polyurethane Science and Technology, Ed.K.C.Frisch, and S.L.Reegen, 1973
35.PU手冊,塑料世界雜誌社編印,P.27-35,2000。
36.林峰標、蔡弼丞、吳世昌,異機能面多層織物的發展與應用,紡織產業綜合研究所,2009。
37.Cheung, Rebecca. Silicon carbide micro electro mechanical systems for harsh environments. Imperial College Press. 2006.
38.Morkç, Strite, Gao. Large-band-gap SiC, III-V nitride, and II-VI Zn-based semiconductor device technologies. Journal of Applied Physics, 1994.
39.Muranaka. Superconductivity in carrier-doped silicon carbide, Sci. Technol, 2008.
40.Harris, Chris; McLachlan, Clark, Colin. Micro reform – Impacts on firms: Aluminium case study. Melbourne: Industry Commission, 1998.
41.Christian Vargel. Corrosion of Aluminium. Elesvier, 2004.
42.Bishop,J.F. and Czekai ,D.A., Application of silicon oxide, P.679, 1997.
43.環境共存型光電材料技術輔導與推廣計畫,經濟部工業局,2009。
44.劉英杰,材料磨損,清華大學機械工程系材料教研組,1984。
45.H.S.Avery, The Measurements of Wear Resistance, Wear, Vol.4, 1901.
46.Napper, D. H. Polymeric Stabilization of Colloidal Dispersion; Academic Press, London, 1984.
47.Verway E. J.W, Overbeek J. Th. G. Theory of Stability of Lyophobic Colloids. Elsevier, Amsterdam, 1948.
48.陳仁英,超微細研磨技術在奈米科技上之應用,工業材料雜誌第185 期 P.171-182,2002。
49.Peter Quedaau. 非水系塗料おけける濕潤、分散. 塗裝と塗料,1982。
50.蔡岳峻,有機高分子/粉體複合材料功能與拉伸性質之研究,碩士論文,國立台北科技大學,台北,2005。
51.王裕仁,水性聚氨基甲酸酯/負離子粉體複合薄膜功能性之研究,碩士論文,國立台北科技大學,台北,2007。
52.陳廷菖、鄭國彬、鄭大偉,ABS導電複合材料電氣與拉伸性質之研究,20th Symposium on Fiber and Textile Technology,2004。
53.邱均浩,ABS/負離子複合材料動態負離子釋放量與物理性質之研究,碩士論文,國立台灣科技大學,台北,2007。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔