跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/21 12:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖柔郡
研究生(外文):Jou-Chun Liao
論文名稱:新型混合式最佳化法的開發及應用
論文名稱(外文):Development of a Noval Hybrid Optimization Algorithm and it’s Application
指導教授:鄭仙志
指導教授(外文):Hsien-Chie Cheng
學位類別:碩士
校院名稱:逢甲大學
系所名稱:航太與系統工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:104
中文關鍵詞:混合式最佳化法遺傳演算法類神經網路法數學規劃法異向性導電膠
外文關鍵詞:Hybrid optimization algorithmGenetic algorithmArtificial neural networkAnisotropic conductive film
相關次數:
  • 被引用被引用:0
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目標係將遺傳演算法、類神經網路法與數學規劃法相互整合提出一個有效且相較傳統遺傳演算法更具計算效能的新型混合式最佳化法(Hybrid optimization algorithm, HOA),此法可同時補三者不足處並擷取三者之優點。值得一提的是,此混合式最佳化法可適用於具有限制條件 (Constrained)、不適定(Ill-posed)以及多目標(Multi-criteria)最佳化問題。除此之外,亦可有效改善遺傳演算法(甚至是整體啟發性/或然率最佳化方法)的內在(Inherent)重要弱點之一-即缺乏明確有效的收斂準則或是計算終止條件。此新型混合式最佳化法在處理多目標最佳化設計問題時,採組合式目標函數數學模型(Composite objective formulation),在處理限制條件時,則採用外部懲罰函數法(Exterior penalty method, EPM)。本文所提出之混合式最佳化法之有效性將以各式基本測試範例進行測試與驗證。分析結果除將與文獻數據比較,亦將與傳統遺傳演算法以及數學規劃法求得之結果進行比對。除此之外,本文將提出數種不同結合遺傳演算法與類神經網路法的混合設計模式(Hybrid design patter)以及多目標設計方式(Multi-criteria design model),以找出其間最佳的組合設計形式。本研究最後透過一真實複雜工程設計問題-即異向性導電膠(Anisotropic conductive film, ACF)型式超薄晶片構裝於軟板上 (Ultra-thin chip on film, UTCOF) 技術的製程熱機械力學行為最佳化設計,進一步確認此新型混合式最佳化法的有效性及適用性。此多目標最佳化設計問題的設計目標含製程引發的構裝翹曲量及ACF膠材介面應力最小化以及ACF微接點接觸應力最大化,設計變數則包含重要的材料、製程以及結構幾何參數。最佳化設計結果將與原始設計以及文獻結果比對。
The study aims at introducing a novel hybrid optimization algorithm (HOA), incorporating three different types of optimization methods, namely, genetic algorithm (GA), artificial neural network (ANN) and mathematical programming (MP), for real complex engineering design problems. The underlying idea of the proposed HOA is to take advantage of the superior features of these three different optimization algorithms while easing their drawbacks, such as, the lack of an effective termination criterion in GA. In the proposed HOA, the GA is responsible for not only evolving the population toward better fitness value but also, based on the newly-evolved populations or feasible design points at each GA generation, for continuously updating the proposed ANN mathematical model for better approximation of the objective and constraint functions. The ANN technique here is used to construct the approximate macro mathematical model or neural network model of the desired objective and constraint function. In the ANN evolution using backpropagation neural network (BPN) algorithm, the feasible design points obtained from each GA generation are considered as example pairs for training and testing the ANN model. The training would continue until the root mean square (RMS) error between the network&;#39;s output and the target value over all the example pairs is minimized. For each or every few GA generations, the newly-updated neural network models, representing the approximate objective and constraint functions, are further used to construct the optimization sub-problem. The solution of the optimization sub-problem is sought through a mathematical programming model using generalized reduced gradient (GRG) algorithm. As the optimization proceeds, a sequence of approximate solutions associated with the continuously-updated ANN models is derived. The iterative process continues until the convergence of the approximate solutions is attained. To deal with the multi-criteria and constrained optimization problems, composite objective formulation (also called weighting method) and exterior penalty method (EPM) are employed in the present HOA, respectively. Besides, several different hybrid design procedures and mutli-criteria design models are also proposed.
To determine the effectiveness of the proposed algorithm, several nonlinear programming test problems are used, in which the calculated results are compared with those of a GA and an MP algorithm, and also with the literature data. At last, the applicability of the proposed HOA is demonstrated through design optimization of a real complex engineering design problem, i.e., the design optimization of the process-induced thermal-mechanical behaviors of an anisotropic conductive film (ACF)-based ultra-thin chip on film (UTCOF) interconnect technology during bonding process. This is a multi-criteria optimization problem, in which the design objective is to seek minimization of the process-induced warpage of the silicon chip and the peeling stress at the ACF/chip interface and maximization of the contact stress at the ACF joints. Results show that the proposed HOA can be applicable for not only the ill-posed but also constrained and multi-criteria optimization problems. Furthermore, the developed algorithm can provide good optimal solutions with much less computational effort, as compared to the GA and MP method, where a larger scale of design problems would yield a more significant improvement in the computational efficiency.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊