(3.236.228.250) 您好!臺灣時間:2021/04/22 05:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王翌安
研究生(外文):Yi-An Wang
論文名稱:金屬氫化物容器內吸氫/釋氫之熱傳增益設計數值分析
論文名稱(外文):Numerical Analysis on the Design of Heat Transfer Enhancement for Hydrogen Sorption/Desorption Performance in Metal Hydride Tank
指導教授:黃柏文黃柏文引用關係
指導教授(外文):Po-Wen Hwang
口試委員:黃柏文王啟昌曾培元
口試委員(外文):Po-Wen HwangChi-Chang WangPei-Yuan Tzeng
口試日期:2013-07-18
學位類別:碩士
校院名稱:逢甲大學
系所名稱:航太與系統工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:126
中文關鍵詞:合金儲氫金屬氫化物熱傳增益LaNi5
外文關鍵詞:Metal Hydride TankHydrogen Storage MetalHeat Transfer EnhancementLaNi5
相關次數:
  • 被引用被引用:0
  • 點閱點閱:189
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對LaNi5吸氫合金於圓柱型儲氫罐內的儲釋氫反應進行數值模擬,並了解不同幾何尺寸以及配置之散熱鰭片對合金儲釋氫效率的影響差異。首先驗證不具熱交換器設計構型儲氫罐之數值模擬結果與文獻量測數據後,探討改變長徑比(L/D)參數對儲/釋氫效能之影響,發現在考慮膨脹區的情況下,罐體L/D值越高之構型,其儲/釋氫效能表現越佳。
接著探討具熱交換器構型之儲氫容器,在固定罐體外型、散熱鰭片以及合金粉末總體積的前提下,採用長度/厚度比(l/t)值越高之散熱鰭片,其吸氫及釋氫所耗費的時間均有明顯的減少。另外,採用兩種l/t值之散熱鰭片,探討鰭片配置方式對儲釋氫效能的影響,結果發現相較於依照鰭片幾何大小循序排列,交錯配置之構型對儲/釋氫之效能均有明顯助益。最後在固定散熱鰭片體積、幾何、配置以及合金粉末總體積的情形下,改變罐體長徑比(L/D),模擬結果顯示內部裝置熱交換器之儲氫罐罐體設計採用高L/D值者,能有效節省其儲/釋氫所需之時間。
This research presents a numerical analysis of hydrogen sorption/desorption performance of a cylindrical metal hydride tank with different geometries and arrangements of cooling fins. In the beginning, comparing the results between the references and the simulation proved the validation of the numerical model. In regards to the influence of L/D(Length/Diameter) ratio to metal hydrogen tank without heat exchanger, we found the tank which included the expansion zone and higher L/D ratio provided better sorption/desorption performance.
Next, we look at the performance of the metal hydride tank with the heat exchanger. While the tank was equipped the heat exchanger, with constant volumes of tank, cooling fins and metal powder, it was found that the performances of hydrogen sorption/desorption of metal hydride tank heat exchanger can be improved by using cooling fins with higher l/t (length/thickness) ratio and higher contact area between powder and fins. Additionally, a higher L/D ratio of the tank gives the hydrogen reactor better performance for the sorption/desorption process. In addition, the metal hydride tank with a staggered cooling fin arrangement exhibits a better hydrogen sorption/desorption performance than the one with sequential cooling fin arrangement.
誌謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 vi
圖目錄 vii
符號說明 xii
第一章 緒論 1
1-1前言 1
1-2文獻回顧 2
1-3研究動機 5
第二章 數學模型與數值方法 6
2-1統御方程式 6
2-1-1統御方程式 6
2-1-2多孔性介質區域統御方程式 7
2-2邊界條件與初始條件 9
2-2-1邊界條件 10
2-3-2初始條件 13
2-3數值方法 14
第三章 模擬結果與討論 16
3-1數學模型驗證結果 16
3-2不具熱交換器構型長徑比(L/D)對儲氫效能之影響 17
3-2-1 儲氫反應過程 17
3-2-2 長徑比(L/D)改變之影響 19
3-3具熱交換器構型配置對於儲氫效能之影響 21
3-3-1儲氫反應過程 21
3-3-2同鰭片體積,不同AC值對儲氫效能影響之比較 22
3-3-3鰭片長度-厚度比(l/t)對儲氫效能影響之比較 24
3-3-4鰭片配置方式對儲氫效能影響之比較 26
3-3-5罐體長徑比(L/D)對儲氫效能影響之比較 28
3-4不具熱交換器構型長徑比(L/D)對釋氫效能之影響 30
3-4-1釋氫反應過程 30
3-4-2長徑比(L/D)改變之影響 32
3-5具熱交換器構型配置對於釋氫效能之影響 33
3-5-1釋氫反應過程 33
3-5-2同鰭片體積,不同AC值對釋氫效能影響之比較 35
3-5-3鰭片長度-厚度比(l/t)對釋氫效能影響之比較 36
3-5-4鰭片配置方式對釋氫效能影響之比較 37
3-5-5罐體長徑比(L/D)對釋氫效能影響之比較 39
第四章 結論與未來展望 41
4-1結論 41
4-2未來展望 42
附表 43
附圖 47
參考文獻 108
[1]K. Mazloomi and C. Gomes, “Hydrogen as an energy carrier: Prospects and challenges”, Renewable and Sustainable Energy Reviews, vol. 16, pp. 3024-3033, 2012
[2]D. Pukazhselvan, V. Kumar and S. K. Singh, “High capacity hydrogen storage: Basic aspects, new developments and milestones”, Nano Energy, vol. 1, pp. 566-589, 2012
[3]A. Jemni and S. B. Nasrallah, “Study of two-dimensional heat and mass transfer during absorption in a metal-hydrogen reactor”, International Journal of Hydrogen Energy, vol. 20, no. 1, pp.43-52, 1995
[4]A. Jemni and S. B. Nasrallah, “Study of two-dimensional heat and mass transfer during desorption in a metal-hydrogen reactor”, International Journal of Hydrogen Energy, vol. 20, No. 11, pp. 881-891, 1995
[5]A. Jemni, S. B. Nasrallah and J. Lamloumi, “Experimental and theoretical study of a metal-hydrogen reactor”, International Journal of Hydrogen Energy, vol. 24, pp. 631-644, 1999
[6]A. Demircan, M. Demiralp, Y. Kaplan, M. D. Mat and T. N. Veziroglu, “Experimental and theoretical analysis of hydrogen absorption in LaNi5–H2 reactors”, International Journal of Hydrogen Energy, vol. 30, pp. 1437-1446, 2005
[7]H. Dhaou, S. Mellouli, F. Askri, A. Jenmi, S. B. Nasrallah, “Experimental and numerical study of discharge process of metal – hydrogen tank”, International Journal of Hydrogen Energy, vol. 32, pp. 1922-1927, 2007
[8]K. Aldas, M. D. Mat and Y. Kaplan, “ A three-dimensional mathematical model for absorption in a metal hydride bed”, International Journal of Hydrogen Energy, vol. 27, pp. 1049-1056, 2002
[9]Y. Kaplan, “Effect of design parameters on enhancement of hydrogen charging in metal hydride reactors”, International Journal of Hydrogen Energy, vol. 34, pp. 2288-2294, 2009
[10]A. K. Phate, M. P. Maiya, S. S. Murthy, “Simulation of transient heat and mass transfer during hydrogen sorption in cylindrical metal hydride beds”, International Journal of Hydrogen Energy, vol. 32, pp. 1969-1981, 2007
[11]S. Mellouli, F. Askri, H. Fhaou, A. Jemni and S. B. Nasrallah, “A novel design of a heat exchanger for a metal-hydrogen reactor”, International Journal of Hydrogen Energy, vol. 32, pp. 3501-3507, 2007
[12]S. Mellouli, F. Askri, H. Dhaou, A. Jemni and S. B. Nasrallah, “Numerical study of heat exchanger effects on charge/discharge times of metal–hydrogen storage vessel”, International Journal of Hydrogen Energy, vol. 34, pp. 3005-3017, 2009
[13]C. A. Chung, S. W. Yang, C. Y. Yang, C. W. Hsu and P. Y. Chiu, “Experimental study on the hydrogen charge and discharge rates of metal hydride tanks using heat pipes to enhance heat transfer”, Applied Energy, vol. 103, pp. 581-587, 2013
[14]A. Souahlia, H. Dhaou, F. Askri, M. Sofiene, A. Jemni and S. B. Nasrallah, “Experimental and comparative study of metal hydride hydrogen tanks”, International Journal of Hydrogen Energy, vol. 36, pp. 12918-12922, 2011
[15]M. Botzung, S. Chaudourne, O. Gillia, C. Perret, M. Latroche, A. Percheron-Guegan and P. Marty, “Simulation and experimental validation of a hydrogen storage tank with metal hydrides”, International Journal of Hydrogen Energy, vol. 33, pp. 98-104, 2008
[16]M. Melnichuka, N. Silina and H.A. Perettib, “Optimized heat transfer fin design for a metal-hydride hydrogen storage container”, International Journal of Hydrogen Energy, vol. 34, pp. 3417-3424, 2009
[17]S. N. Nyamsi, F. Yang and Z. Zhang, “An optimization study on the finned tube heat exchanger used in hydride hydrogen storage system e analytical method and numerical simulation”, International Journal of Hydrogen Energy, vol. 37, pp. 16078-16092, 2012
[18]Z. Bao, F. Yang, Z. Wu, S. N. Nyamsi and Z. Zhang, “Optimal design of metal hydride reactors based on CFD–Taguchi combined method”, Energy Conversion and Management, vol. 65, pp. 332-330, 2013
[19]劉長學, “具矩形熱控鰭片之碳纖維儲氫罐混合儲釋氫效能分析”, 逢甲大學機械與電腦輔助工程學系碩士班碩士論文, 2012
[20]F.P. Inceopera, D. P. Dewitt, T. L. Bergman and A. S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed. John Wiley &; Sons, 2007
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔