跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/22 16:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許昂焜
研究生(外文):Ang-Kuen Hsu
論文名稱:無線感測網路上兼具能源與時間效益的多重行動代理人資料收集機制
論文名稱(外文):Energy and Time Efficient Multiple Mobile Agents Data Collection Schemes in Wireless Sensor Networks
指導教授:黃志銘黃志銘引用關係
指導教授(外文):Jyh-Ming Huang
口試委員:陳烈武黃志銘王壘
口試委員(外文):Lien-Wu ChenJyh-Ming HuangLei Wang
口試日期:2013-07-16
學位類別:碩士
校院名稱:逢甲大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:89
中文關鍵詞:無線感測網路行動代理人延遲時間能源消耗路徑規劃
外文關鍵詞:Wireless Sensor NetworkMobile AgentsDelay TimeEnergy ConsumptionItinerary Planning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:1
在無線感測網路的研究中,以行動代理人(Mobile Agent,MA)為基礎的資料收集機制,已被證實在資料傳輸效率與網路節能效果上,均優於傳統的主從式架構(Client/Server,C/S)。然而大多數的相關文獻幾乎都著重在如何規劃出一或數條較節能的路徑,卻忽略考慮因MA收集大量資料所造成的傳輸延遲時間(Delay Time),故並不適用於即時性(Real-Time)的應用。因此,本論文提出兩個兼具網路節能與時間效益的多重行動代理人資料收集機制,我們統稱為MMADCS(Multiple Mobile Agent based Data Collection Scheme)。MMADCS以建造最小成本路徑樹為基礎,透過樹狀結構的剪裁調整,盡量分散每條傳輸路徑的資料負載,來平衡節點能源消耗,藉此延長網路存活時間(Network Lifetime)。為了同步進行資料收集的目的,MMADCS以廣播MA方式來縮短網路整體傳輸延遲時間,滿足即時資料處理的應用需求。我們採用了兩種不同架構方式來實作MMADCS:分別為CB-MMADCS及F-MMADCS。CB-MMADCS將網路中的節點先行叢集化,再以叢集架構加以建樹並剪裁,藉由叢集特性來進行聚合資料與節約能源,以達到低傳輸延遲效果;F-MMADCS則在平面網路上,直接以傳統方式建立樹狀傳輸結構,再進行剪裁以同時達到節能與時間效益的訴求。
為了驗證我們所提的CB-MMADCS和F-MMADCS,我們使用C#程式來進行模擬。本論文測試所提的多重代理人資料收集機制之效益,透過不同節點數量的環境由稀疏到密集,並將結果與一些同為樹狀結構多代理人資料收集機制進行比較。模擬結果證實,本論文所提的CB-MMADCS和F-MMADCS,在整體傳輸延遲、網路能源消耗和EDP (Energy Delay Product)成本方面,明顯優於過去一些類似的機制。
In wireless sensor networks (WSNs), mobile agent-based data collection schemes have been proven to be superior, in terms of data transmission latency and network energy consumption, to the counterparts were performed with traditional client/server architectures. However, most of previous related researches always focused on how to find out one or more energy-efficient paths to transmit, instead ignore the data transmission delay caused by a large amount of data processing. As a consequence, they were not very suitable for real-time applications.
In this paper, we thus propose two energy- and time-efficient mobile agent-based data collection schemes, totally termed as MMADCS (Multiple Mobile Agent based Data Collection Scheme). Based on multiple minimum cost itinerary trees, MMADCS further prunes these trees to distribute the workloads processed between them as evenly as possible, and thus balances node energy consumption and prolongs network lifetime. In addition, for performing simultaneous data collection, MA-broadcasting method is also used to reduce overall transmission delay. We implement two protocols with MMADCS: they are CB-MMADCS and F-MMADCS. The CB-MMADCS builds cluster-based trees first and prunes them. With the contributions of clustering on parallel data aggregation and energy conservation, it can achieve a low transmission delay and energy cost. While, F-MMADCS directly builds trees in traditional flat networks, and prunes them to reach the requirements of energy and time savings.
To validate our proposed CB-MMADCS and F-MMADCS schemes, several simulations have been conducted under different environments with various numbers of nodes. We also compare the results with that of existing counterparts. Simulation results show that both the proposed CB-MMADCS and F-MMADCS schemes significantly outperform some previous schemes, in the aspects of overall transmission delay, network energy consumption, and EDP (Energy Delay Product) cost.
誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 ix
第1章 導論 1
1.1 研究背景 1
1.2 研究動機與目標 6
第2章 目前相關研究 8
2.1 單一行動代理人的資料收集機制 8
2.1.1 局部最近節點優先的路徑規劃 8
2.1.2 全域最近節點優先的路徑規劃 9
2.1.3 選擇最佳第一節點最小化能源的路徑規劃 10
2.1.4 多次選擇最佳節點最小化能源的路徑規劃 10
2.2 多重行動代理人的資料收集機制 11
2.2.1 以中心位置為基礎的路徑規劃方法 11
2.2.2 以方位為基礎的路徑規劃方法 13
2.2.3 以方向性結合中心位置的路徑規劃方法 14
2.2.4 以基因演算法為基礎的路徑規劃方法 15
2.2.5 以樹狀結構為基礎的路徑規劃方法 17
2.2.5.1 使用平衡最小生成樹之路徑規劃 17
2.2.5.2 近似最佳路徑規劃 19
2.2.5.3 避免壅塞的路徑規劃 21
2.2.5.4 以樹為基礎的路徑規劃 24
2.2.5.5 以代理人複製增生為基礎的路徑規劃 25
2.2.5.6 以兩種樹增生為基礎的路徑規劃 27
第3章 研究方法與步驟 31
3.1 網路環境假設 32
3.2 叢集架構之MMADCS(CB-MMADCS) 32
3.2.1 路徑規劃(建樹)階段 32
3.2.2 樹狀傳輸結構的剪裁 34
3.2.3 資料收集階段 38
3.3 平面架構之MMADCS(F-MMADCS) 38
3.3.1 路徑規劃(建樹)階段 39
3.3.2 樹狀傳輸結構的剪裁 40
3.3.3 資料收集階段 42
第4章 模擬與分析 43
4.1 CB-MMADCS成員數目對於延遲時間之影響 45
4.2 計算半徑變化對CB-MMADCS延遲時間影響 51
4.3 CB-MMADCS與其單獨方法之效能比較 54
4.4 F-MMADCS與其單獨方法之效能比較 59
4.5 MMADCS與其它協定之效能比較 64
第5章 結論 72
參考文獻 75
Vita 79
Publications 79
[1]K. Romer and F. Mattern, “The Design Space of Wireless Sensor Networks,” Wireless Communications, IEEE, vol. 11, no. 6, pp. 54-61, 2004.
[2]K. Sohrabi, J. Gao, V. Ailawadhi, and GJ. Pottie, “Protocols for Self-Organization of A Wireless Sensor Network,” Personal Communications, IEEE, vol. 7, no. 5, pp. 16–27, 2000.
[3]I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless Sensor Networks: A survey,” Computer Networks, vol. 38, no. 4, pp. 393-422, 2002.
[4]K. Akkaya and M. Younis, “A Survey of Routing Protocols in Wireless Sensor Networks,” Elsevier Ad Hoc Network Journal, Vol. 3, No. 3, pp. 325-349, 2005.
[5]F. Zhao and L. Guibas, “Wireless Sensor Networks,” Morgan Kaufmann Publishers, 2004.
[6]C. Gui and P. Mohapatra, “Power Conservation and Quality of Surveillance in Target Tacking Sensor Networks,” in Proc. MOBICOM, pp.129-143, 2004.
[7]P. Kuryloski, A. Giani, R. Giannantonio, K. Gilani, R. Gravina, V. Seppa, E.Y.W. Seto, V. Shia, C. Wang, P. Yan, A.Y. Yang, J. Hyttinen, S. Sastry, S.B. Wicker, and R. Bajcsy, “DexterNet: An Open Platform for Heterogeneous Body Sensor Networks and its Applications,” in Proc. BSN, pp.92-97, 2009.
[8]S. Hussain, S. Schaffner, and D. Moseychuck, “Applications of Wireless Sensor Networks and RFID in a Smart Home Environment,” in Proc. CNSR, pp.153-157, 2009.
[9]J.E. Tapiador, M. Srivatsa, J.A. Clark, and J.A. McDermid, “Decorrelating WSN Traffic Patterns with Maximally Uninformative Constrained Routing,” in Proc. NETWORKING Workshops, pp.207-218, 2011.
[10]H. Zhao, W. Zhou, and Y. Gao, “Energy Efficient and Cluster Based Routing Protocol for WSN,” In CIS, pp.107-111, 2012.
[11]T. Schmid, D. Torres, and M.B. Srivastava, “Low-Power High-Precision Timing Hardware for Sensor Networks,” in Proc. SenSys, pp.337-338, 2009.
[12]F. Ganhão, M.P. Pereira, L. Bernardo, R. Dinis, R. Oliveira, and P. Pinto, “Energy Per Useful Packet Optimization on a TDMA WSN Channel,” in Proc. ICCCN, pp.1-6, 2010.
[13]A. Sharif, V. Potdar, and A.J.D. Rathnayaka, “Performance Evaluation of Different Transport Layer Protocols on the IEEE 802.11 and IEEE 802.15.4 MAC/PHY Layers for WSN,” in Proc. MoMM, pp.300-310, 2009.
[14]C. Lin, J. Kuo, and M. Tsai, “Reliable GPS-Free Double-Ruling-Based Information Brokerage in Wireless Sensor Networks,” in Proc. INFOCOM, pp.351-355, 2010.
[15]A. Caruso, S. Chessa, S. De, and A. Urpi, “GPS free coordinate assignment and routing in wireless sensor networks,” in Proc. INFOCOM,” pp.150-160, 2005.
[16]R. Katsuma, Y. Murata, N. Shibata, K. Yasumoto, and M. Ito, “Extending k-Coverage Lifetime of Wireless Sensor Networks Using Mobile Sensor Nodes,” in Proc. WiMob, pp.48-54, 2009.
[17]C. Chang, W. Chu, C. Lin, and C. Cheng, “Energy-balanced hole-movement mechanism for temporal full-coverage in mobile WSNs,” in Proc. IWCMC, pp.89-93, 2010.
[18]L. Wei, C. Ming, and L. Mingming, “Information Security Routing Protocol in the WSN,” in Proc. IAS, pp.651-656, 2009.
[19]M.L. Das, “Two-factor User Authentication in Wireless Sensor Networks,” IEEE Transactions on Wireless Communications, vol. 8, no. 3, pp.1086-1090, 2009.
[20]M.A. Azim, M.R. Kibria, and A. Jamalipour, “An Optimized Forwarding Protocol for Lifetime Extension of Wireless Sensor Networks,” Wireless Communications and Mobile Computing, pp.103-115, 2009.
[21]H. Hou, X. Liu, H. Yu, and H. Hu, “GLB-DMECR: Geographic Location-Based Decentralized Minimum Energy Consumption Routing in Wireless Sensor Networks,” in Proc. PDCAT, pp.629-633, 2005.
[22]Y. Xu and H. Qi, “Distributed Computing Paradigms for Collaborative Signal and Information Processing in Sensor Networks,” Journal of Parallel and Distributed Computing, vol. 64, no. 8, pp. 945-959, 2004.
[23]M. Chen, T. Kwon, Y. Yuan, and V.C. Leung, “Mobile Agent Based Wireless Sensor Networks,” Journal of Computers, vol. 1, no. 1, pp. 14–21, 2006.
[24]H. Qi and F. Wang, “Optimal Itinerary Analysis for Mobile Agents in Ad Hoc Wireless Sensor Networks,” International Conference on Communications, IEEE, vol. 1, pp. 147-153, 2001.
[25]M. Chen, V. Leung, S. Mao, T. Kwon, and M. Li, “Energy-efficient Itinerary Planning for Mobile Agents in Wireless Sensor Networks,” IEEE Transactions on Vehicular Technology, vol. 60, no. 7, pp. 3290–3299, 2011
[26]M. Chen, S. Gonzlez, Y. Zhang, and V.C.M. Leung, “Multi-Agent Itinerary Planning for Wireless Sensor Networks,” Springer, LNICST 22, pp. 584–597, 2009
[27]W. Cai, M. Chen, X. Wang, T. Kwon, and Y. Choi, “Angle Gap (AG) Based Grouping Algorithm for Multi-Mobile Agents Itinerary Planning in Wireless Sensor Networks,” Proceedings of Korea Information and Communications Society Fall Conference &;#39;09, 2009.
[28]M. Chen, S. Gonzalez, and V. Leung, “Directional Source Grouping for Multi-Agent Itinerary Planning in Wireless Sensor Networks,” Proceedings of the International Conference on ICT Convergence (ICTC), pp. 207-212, 2010.
[29]W. Cai, M. Chen, T. Hara, and L. Shu, “GA-MIP: Genetic Algorithm Based Multiple Mobile Agents Itinerary Planning in Wireless Sensor Network,” Proceedings of 5th International Conference on Wireless Internet. (WICON), pp. 1-8, 2010.
[30]M. Chen, W. Cai, S. González, and V.C.M. Leung, “Balanced Itinerary Planning for Multiple Mobile Agents in Wireless Sensor Networks,” in Proc. ADHOCNETS, pp. 416-428, 2010.
[31]D. Gavalas, A. Mpitziopoulos, G. Pantziou, and C. Konstantopoulos, “An Approach for Near-Optimal Distributed Data Fusion in Wireless Sensor Networks,” Springer, Wireless Network, vol. 16, no. 5, pp. 1407–1425, 2009.
[32]A. Mpitziopoulos, D. Gavalas, C. Konstantopoulos, and Pantziou, G., “JAID: An Algorithm for Data Fusion and Jamming Avoidance on Distributed Sensor Networks,” Pervasive and Mobile Computing, pp. 135–147, 2009
[33]A. Mpitziopoulos, D. Gavalas, C. Konstantopoulos, and G. Pantziou, “CBID: A Scalable Method for Distributed Data Aggregation in WSNs,” International Journal of Distributed Sensor Networks, vol. 2010, pp. 1-14, 2010.
[34]C. Konstantopoulos, A. Mpitziopoulos, D. Gavalas, and G. Pantziou, “Effective Determination of Mobile Agent Itineraries for Data Aggregation on Sensor Networks,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 12, pp. 1679–1693, 2010.
[35]S.D. Muruganathan, D.C.F. Ma, R.I. Bhasin, and A.O. Fapojuwo, “A Centralized Energy-Efficient Routing Protocol for Wireless Sensor Networks,” IEEE Communications Magazine, vol. 43, no. 3, pp. 8-13, 2005.
[36]J. Soheil, H.H. Mohammad, M. Behzad, and K. Ahmad, “Clone-Based Mobile Agent Itinerary Planning Using Separate Trees for Data Fusoin in WSNS,” International Journal of Wireless &; Mobile Networks, vol. 4, no. 4, pp.227, 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 劉正(1999)。學校教育在台灣勞動市場的重要性:人力資本或文憑主義?(上)。教育社會學通訊,17,3-9。
2. 黃毅志(1995)。臺灣地區教育職業機會不平等性之變遷。東吳社會學報,4,227-260。
3. 黃毅志(1990)。臺灣地區教育機會的不平等性。思與言,28(1),93-125。
4. 張莉慧(2009)。臺灣推動閱讀之觀察與省思。臺灣圖書館管理季刊,5(4),82-98。
5. 孫清山、黃毅志(1996)。補習教育、文化資本與教育取得。臺灣社會學刊,19,95-139。
6. 林郡雯、張建成(2008)。不同階級國中生之文憑意象的探究。當代教育研究季刊,16(4),199-235。
7. 李雪莉(2007)。別當直升機父母。天下雜誌,368,106-118。
8. 吳慧瑛(2007)。家庭背景與教育成就:五個出生世代的比較分析。人口學刊,34, 109-143。
9. 王建雅、陳學志(2009)。腦科學為基礎的課程與教學。教育實踐與研究,22(1),139-168。
10. 江豐富(1995)。以文憑還是以人力資本取才:台灣地區實證研究。教育研究資訊,3(5),17-35。
11. 劉正(2006)。補習在臺灣的變遷、效能與階層化。教育研究集刊,52,(4),1-31。
12. 蕭新煌(1995)。台灣中產階級總觀察。財訊月刊,163,96-103。
13. 駱明慶(2002)。誰是台大生?性別、省籍與城鄉差異。經濟論文叢刊,30(1),113-147。
14. 謝小芩(1998)。性別與教育期望。婦女與兩性學刊,9,205-231。
15. 關秉寅、李敦義(2008)。補習數學有用嗎?:一個「反事實」的分析。臺灣社會學刊,12(41),97-148。