跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/23 08:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林佑儒
研究生(外文):Lin Yu Ju
論文名稱:手持式通訊裝置機殼障板效應對於收音系統表現之探討
論文名稱(外文):Analysis of the Baffled Effect for the Microphone System in Portable Communication Devices
指導教授:劉育成劉育成引用關係
指導教授(外文):Liu Yu Cheng
口試委員:方俊夏育群
口試委員(外文):Fang JunShiah Yui Chuin
口試日期:2013-07-10
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電聲碩士學位學程
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:119
中文關鍵詞:手機電容式麥克風有限元素障板效應等效電路
外文關鍵詞:mobile phonecondenser microphoneAbaqusbaffled effectequivalent circuit method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:287
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:3
隨著科技的進步,行動電話儼然已成為個人生活中不可或缺的隨身物品;在考量使用者攜帶與使用上的便利性前提下,相關通訊產品的功能越來越多,但相對地體積卻越作越小,智慧型手機即是一個具代表性的產品。隨著手機一方面在整體尺寸上微小化的要求,另一方面卻必須提升特性的前提下,產品內部的設計上相形越來越具有難度。就通訊產品收音系統的麥克風來說,其收音位置也由傳統常見手機正面直的接收音位置,變化移置手機底部等處,此在設計上看似簡單卻有不得不的位置變化,卻著實大大的影響了產品的收音特性表現。
因此,本文將針對手機機殼表面對於不同麥克風收音位置的障板效應影響進行音場分析,透過有限元素法電腦輔助分析軟體Abaqus模擬分析整體音場變化與各廠牌實體手機之麥克風收音系統,藉以徹底了解手機結構與收音間的音場關係;再藉由實際量測進行比較與驗證。分析結果可知,手機之障板效應常見起始於1 kHz,並約莫於5 kHz~6 kHz間將出現一轉置頻率,此頻率的存在對於手機障板設計上具有相當的重要性。最後,利用LabVIEW整合等效電路模擬,建立一套適用於具障板效應之通訊產品之麥克風收音模擬分析流程與量測方法,便利未來模擬設計使用。
With the development of sciences and techniques, a mobile phone has become a necessity in our daily life. To cater for the fantasy of the user, the mobile phone is designed to be slim and light, yet equipped with diversified functions. For that, enhancement it&;#39;s sound clarity and audible frequency range, becomes a major topic nowadays and very challenging in design, the position of the smart phone microphone system is placed at the bottom instead of the traditional front side, and as a result, the characteristics of microphone turn out and be different form the traditional.
The object of this thesis is focused on the analysis and discussions in the baffled effect formed by the front faceplate of mobile phone. By using the FEM commercial software, Abaqus, the variations and relationships of sound field with different sizes and positions of baffle are analyzed and modeled. Moreover, those simulating results have perfect agreements with those by the practical experiment, especially in beginning and transforming frequency of baffled effect. Finally, all the simulating results for the baffled effect are integrated within the ECM system. A novel and convenient operating platform in Labview are also constructed.
摘要 .......................................................................................................... IV
ABSTRACT .............................................................................................. V
目錄 .......................................................................................................... VI
圖目錄 ........................................................................................................ X
表目錄 ..................................................................................................... XV
第一章 緒論............................................................................................... 1
1-1前言 .................................................................................................. 1
1-2研究動機 .......................................................................................... 2
1-3文獻回顧 .......................................................................................... 3
1-4論文架構 .......................................................................................... 7
1-5論文研究流程 .................................................................................. 8
第二章 電容式麥克風之理論應用 .......................................................... 9
2-1電聲等效電路理論 .......................................................................... 9
2-1.1電路等效 ................................................................................... 9
2-1.2機械元件等效 ......................................................................... 10
2-1.3聲學元件等效 ......................................................................... 12
2-1.4聲輻射阻抗 ............................................................................. 14
2-2電容式麥克風等效電路模型 ........................................................ 16
2-2.1等效電路模型 ......................................................................... 16
2-2.2等效電路方程式推導 ............................................................. 21
第三章 通訊裝置障板效應之量測與模擬分析 .................................... 24
3-1障板效應量測架設 ........................................................................ 25
3-1.1量測環境及設備 ..................................................................... 25
3-1.2量測步驟 ................................................................................. 26
3-1.3障板效應量測 ......................................................................... 27
3-1.4量測距離 ................................................................................. 29
3-1.5量測治具 ................................................................................. 30
3-1.6障板效應量測 ......................................................................... 32
3-2壓克力障板特性量測 .................................................................... 34
3-2.1不同尺寸之障板效應量測 ..................................................... 34
3-2.1分析障板邊長對障板效應的影響 ......................................... 40
3-3壓克力障板模態敲擊測試 ............................................................ 41
3-4有限元素法障板效應 .................................................................... 43
3.4-1 ABAQUS有限元素分析模擬軟體 ........................................ 43
3-4.2 ABAQUS有限元素分析模擬軟體設定建模材料特性........ 44
3-4.3模型物件組裝 ......................................................................... 46
3-4.4設定紀錄點 ............................................................................. 47
3-4.5邊界條件設定 ......................................................................... 48
3-4.6網格化 ..................................................................................... 50
3-5有限元素模擬障板效應與量測結果驗正 .................................... 52
3-5.1障板一位置5 .......................................................................... 53
3-5.2延伸空氣層使其包覆障板 ..................................................... 54
3-5.3障板一位置4 .......................................................................... 55
3-5.4障板一位置7 .......................................................................... 56
3-5.5障板位置8 .............................................................................. 57
3-6利用有限元素模擬進行障板效應分析 ........................................ 58
3-6.1等面積障板 ............................................................................. 59
3-6.2倍數面積障板效應關係 ......................................................... 59
3-6.3正方形障板邊長縮放障板效應 ............................................. 60
3-6.4障板增加單邊障板效應 ......................................................... 61
3-6.5障板逐步增加雙邊邊長障板效應 ......................................... 62
3-7障板效應分析障板位置8 ............................................................. 63
3-8障板底部障板效應量測與模擬 .................................................... 64
3-8.1量測方法及架設 ..................................................................... 65
3-8.2底部障板效應量測 ................................................................. 66
3-8.3底部障板效應有限元素模擬 ................................................. 66
3-8.4模擬與量測之障板效應結果 ................................................. 68
3-9 障板材質對於障板效應之影響 ................................................... 69
3-9.1有限元素模擬結果 ................................................................. 70
第四章手持式通訊裝置與障板效應之應用 .......................................... 71
4-1 障板效應於實際手機上的量測與模擬 ....................................... 71
4-1.1手持式通訊裝置 Nokia 8810 之障板效應模擬與量測分析 ........................................................................................................... 71
4-1.2手持式通訊裝置 I Phone 3GS 之障板效應模擬與量測分析 ........................................................................................................... 75
4-2 已知障板效應預測未知的障板效應 ........................................... 80
4-2.1障板效應治具 ......................................................................... 80
4-2.2預估障板效應分析 ................................................................. 81
4-3障板效應分析之應用 .................................................................... 82
4-3.1電容式麥克風之等效電路 ..................................................... 82
4-3.2 等效電路與障板效應模擬 .................................................... 84
4-3.3電容式麥克風之量測感度響應與有限元素模擬之障板效應修正 ................................................................................................... 87
4-4手持式通訊裝置之收音結構分析GUI界面設計 ....................... 88
4-4.1圖形介面化軟體LabVIEW介紹 .......................................... 89
4-4.2手持式通訊裝置之收音結構分析GUI界面設計 ................ 89
第五章 結論與未來展望 ........................................................................ 94
5-1論文結論 ........................................................................................ 94
5-1.1障板效應量測 ......................................................................... 94
5-1.2有限元素模擬 ......................................................................... 95
5-1.3障板效應分析 ......................................................................... 95
5-1.4障板效應應用 ......................................................................... 97
5-2論文的未來與展望 ........................................................................ 97
參考文獻 ................................................................................................... 99
[1] Wikipedia website, https://en.wikipedia.org/wiki/Microphone [2] Bai, M. R., &; Liao, J. (2005). Acoustic analysis and design of miniature loudspeakers for mobile phones. Journal of the Audio Engineering Society,53(11), 1061-1076. [3] Kumar, S. (2003, March). Acoustic Personalization of Mobile Phones. In Audio Engineering Society Convention 114. Audio Engineering Society. [4] Backman, J. (2008, August). Mobile Phone Audio: The Shape of Things to Come. In Audio Engineering Society Conference: 34th International Conference: New Trends in Audio for Mobile and Handheld Devices. Audio Engineering Society. [5] Beranek, L. L., &; Mellow, T. (2012). Acoustics: Sound Fields and Transducers Chapter 8. Academic Press. [6] Olson, H. F. (1977). Microphones for Recording. Journal of the Audio Engineering Society, 25(10/11), 676-684. [7] Sank, J. R. (1985). Microphones. Journal of the Audio Engineering Society,33(7/8), 514-547. [8] Bauer, B. B. (1987). A century of microphones. Journal of the Audio Engineering Society, 35(4), 246-258. [9] Rec, I. T. U. T. G. 722.2 2002 Wideband Coding of Speech at Around 16 kbit/s Using Adaptive Multi-Rate Wideband (AMR-WB). International Telecommunication Union (ITU).
[10] Nimura, T., &; Watanabe, Y. (1953). Effect of a finite circular baffle board on acoustic radiation. The Journal of the Acoustical Society of America, 25, 76. [11] Mangulis, V. (1967). On Optimum Baffles. The Journal of the Acoustical Society of America, 42, 646. [12] Wallace, C. E. (1972). Radiation resistance of a rectangular panel. The Journal of the Acoustical Society of America, 51, 946. [13] Stepanishen, P. R. (1971). Transient radiation from pistons in an infinite planar baffle. The Journal of the Acoustical Society of America, 49, 1629. [14] Meecham, W. C., Bui, T. D., &; Miller, W. R. (1981). Diffraction of dipole sound by the edge of a rigid baffle. The Journal of the Acoustical Society of America,70, 1531. [15] Hourigan, K., Welsh, M. C., Thompson, M. C., &; Stokes, A. N. (1990). Aerodynamic sources of acoustic resonance in a duct with baffles. Journal of Fluids and Structures, 4(4), 345-370. [16] 李永成,&;quot;平板受聲源作用之振動與輻射聲場分析&;quot;,2000. [17] Martin, H. C. (1968). Finite element analysis of fluid flows. Washington Univ Seattle Dept Of Aeronautics and Astronautics. [18] Bermúdez, A., Durán, R., &; Rodríguez, R. (1998). Finite element analysis of compressible and incompressible fluid-solid systems. Mathematics of Computation of the American Mathematical Society, 67(221), 111-136. [19] Bathe, K. J., Zhang, H., &; Ji, S. (1999). Finite element analysis of
fluid flows fully coupled with structural interactions. Computers &; Structures, 72(1), 1-16.. [20] Tezduyar, T. E. (2001). Finite element methods for flow problems with moving boundaries and interfaces. Archives of Computational Methods in Engineering,8(2), 83-130. [21] Wright, J. R. (1995). An exact model of acoustic radiation in enclosed spaces.Journal of the Audio Engineering Society, 43(10), 813-820. [22] Kang, Y. J., &; Bolton, J. S. (1995). Finite element modeling of isotropic elastic porous materials coupled with acoustical finite elements. The Journal of the Acoustical Society of America, 98, 635. [23] Kopuz, Ş., Samim Ünlüsoy, Y., &; Çalişkan, M. (1996). Integrated FEM/BEM approach to the dynamic and acoustic analysis of plate structures. Engineering analysis with boundary elements, 17(4), 269-277.
[24] (2007) &;quot; Sound Radiation Analysis of Automobile Engine Covers&;quot;. DS SIMULIA. [25] Strek, T. (2010). Finite Element Modelling of Sound Transmission Loss in Reflective Pipe. Finite Element Analysis, D. Moratal, Ed., ed: InTech. [26] Gibbons, C., &; Miles, R. N. (2000). Design of a biomimetic directional microphone diaphragm (Master&;#39;s thesis, State University of New York at Binghamton, Department of Mechanical Engineering)..
[27] Fuldner, M., Dehé, A., &; Lerch, R. (2005). Analytical analysis and finite element simulation of advanced membranes for silicon microphones. Sensors Journal, IEEE, 5(5), 857-863. [28] Opitz, M., &; Barnert, R. (2001). Modern Development Tools for Dynamic Transducers. PREPRINTS-AUDIO ENGINEERING SOCIETY. [29] Barnert, R. (2001, November). Modal improved condenser microphone. In Audio Engineering Society Convention 111. Audio Engineering Society. [30] Reutter, T., &; Schrag, G. (2010, November). Reliable piezoelectric FEM-simulations of MEMS microphones: Basis for intrinsic stress reduction. InSensors, 2010 IEEE (pp. 193-196). IEEE. [31] Oberndöfer, J., Schrag, G., &; Wachutkaa, G. (2012). Efficient model for predictive MEMS microphone design: Model derivation and experimental verification. Procedia Engineering, 47, 1327-1330. [32] Biba, Dominik, and Martin Opitz. &;quot;Development of a Finite Element Headphone Model.&;quot; Audio Engineering Society Convention 122. 2007.
[33] C. Jackman. &;quot;Estimating Acoustic Performance of a Cell PhoneSpeaker Using Abaqus&;quot; DS SIMULIA. 2009. [34] Onishi, Yasuharu, et al. &;quot;The Acoustical design of Mobile phones.&;quot; [35] Cheer, Jordan, et al. &;quot;The effect of finite sized baffles on mobile device personal audio.&;quot; Audio Engineering Society Convention 130. 2011.
[36] 莊璵帆,&;quot;電容式麥克風與導音管之分析與研究和音場分析&;quot;,碩士論文,2009.
[37] 謝正輝,&;quot;入射波對具有導音管電容式麥克風之分析&;quot;,碩士論文,2010.
[38] J. H. Huang, (2009) “ElectroAcoustic Tranducers”, Feng Chia University Acoustic Graduate Program. [39] Kinsler, L. E., Frey, A. R., Coppens, A. B., &; Sanders, J. V. (1999). Fundamentals of acoustics. Fundamentals of Acoustics, 4th Edition, by Lawrence E. Kinsler, Austin R. Frey, Alan B. Coppens, James V. Sanders, pp. 560. ISBN 0-471-84789-5. Wiley-VCH, December 1999., 1.
[40] 杜功煥著, &;quot;聲學基礎&;quot;, 南京大學出版社,2012. [41] Hrennikoff, A. (1941). Solution of problems of elasticity by the framework method. Journal of applied mechanics, 8(4), 169-175. [42] Courant, R. (1943). Variational methods for the solution of problems of equilibrium and vibrations. Bull. Amer. Math. Soc, 49(1), 23. [43] Clough, R. W. (1960). The finite element method in plane stress analysis.
[44] Wikipedia website , http://en.wikipedia.org/wiki/Nastran. [45] Rayleigh, B. J. W. S. (1896). The theory of sound (Vol. 2). Macmillan.
[46] Wikipedia website , http://en.wikipedia.org/wiki/Mobile_phone.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top