(3.235.41.241) 您好!臺灣時間:2021/04/21 12:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張明軒
論文名稱:具有諧波抑制效果之微帶線饋入環形槽孔天線之研究
論文名稱(外文):Study of Microstrip-fed Ring Slot Antennas with Harmonic Suppression
指導教授:沈昭元
口試委員:韓端勇沈昭元謝新銘
口試日期:2013-06-28
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電機工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:75
中文關鍵詞:槽孔天線圓極化諧波抑制
外文關鍵詞:ring-slot antennacircularly polarizedharmonic suppression
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
近年來通訊產品講求的是重量輕、體積小與降低製造所需的成本。為了因應此趨勢,將天線與通訊系統的前端電路整合於單一結構中的設計方式越來越受到關注。然而天線產生的高階諧振模態直接對主動電路產生電磁干擾的問題,導致主動電路的效能降低。常見的解決方式是於結構中加入低通或帶通濾波器來降低雜訊的干擾,但是濾波設計會使電路尺寸與成本增加且產生額外的插入損失等缺點。為了解決上述的缺點,本論文以具有諧波抑制效果的環形槽孔天線設計為主要研究方向。
本論文提出之設計可分為兩個部份,第一部份提出一支操作於WLAN 2.4 GHz且具有諧波抑制效果的環形槽孔天線。利用倒U型接地面缺陷結構(DGS)可做為低通濾波器的特性,將其整合於環形槽孔天線中,藉此抑制不需要的高階諧振模態,抑制範圍之全頻帶(3 - 9 GHz)內的反射損失皆小於 3 dB。此天線設計之優點為結構簡單並具小型尺寸的功能。
論文的第二部份提出具有諧波抑制效果之圓極化環形槽孔天線。此部分首先提出一操作於WLAN 2.4 GHz的新型環形槽孔圓極化天線設計,天線的圓極化軸比頻寬為210 MHz (8.79 %)。此圓極化天線設計優點在於不需要改變饋入端的結構,易與第一部分所提出的諧波抑制結構做結合。最後整合上述諧波抑制天線與圓極化天線設計,可達到應用於WLAN 2.4 GHz且具有寬頻帶諧波抑制效果之圓極化天線的設計目標,且圓極化軸比頻寬可達223 MHz (9.33 %)。
Recently, it is a pre-requisite requirement for hand-held communication products to possess the advantages such as light in weight, compact size and low manufacturing cost. To satisfy these requirements, a single structure design that comprised of an antenna integrated with the front-end circuit of the communication system is presently attracting many attentions. However, higher-order resonant modes excited by the antenna can cause EMI problems on the active circuit, which lead to degrading the performances of the system. Hence, the common solution to solve this problem is to use low-pass or band-pass filter. However, this method will increase the circuit size, manufacture cost, and insertion loss. To resolve these disadvantages, harmonic suppression antenna design is now an attractive topic of research interest.
This thesis are divided into two parts, the first part presents a harmonic suppression annular-ring slot antenna that operates in the 2.4 GHz WLAN band. Here, the inverted U-shaped ground defect structure (DGS) is used as a low-pass filter, and it is integrated into an annular-ring slot antenna, so that it can suppress unwanted higher-order resonance modes (return loss < 3 dB) within the frequencies range between 3 and 9 GHz.
In the second part of this thesis, a circularly polarized (CP) annular-ring slot antenna with harmonic suppression is proposed. It is noteworthy that this CP annular-ring slot antenna with harmonic suppression design has never been discussed or reported elsewhere in the open-literature. In this design, a novel CP annular-ring slot antenna operating at WLAN 2.4 GHz is initially studied with axial ratio (AR) bandwidth of 210 MHz (8.79%). Here, the main advantage of this CP slot antenna design is that during the process of integration with the harmonic suppression structure (DGS) discussed in the part 1, there is no need to alter the antenna’s feed terminal. By integrating the DGS into the proposed CP annular-ring slot antenna structure, a 2.4 GHz WLAN antenna with wide harmonic suppression bandwidth between 3 and 10 GHz is achieved, and the AR bandwidth is 223 MHz (9.33%).
摘 要 i
目 錄 v
圖目錄 vii
縮寫及符號對照表 x
第一章 序論 1
1.1 概述 1
1.2 文獻探討 2
1.3 內容提要 4
第二章 具有諧波抑制效果之環形槽孔天線設計 6
2.1 概述 6
2.2 天線設計 7
2.2.1等效電路模擬 10
2.3天線特性與重要參數分析 17
2.4量測結果與結論 26
第三章 具有諧波抑制效果之環形槽孔圓極化天線設計 32
3.1 概述 32
3.2設計流程 33
3.3 天線結構 35
3.4 圓極化天線重要參數分析 37
3.4.1圓極化天線量測結果與結論 46
3.5 具有諧波抑制效果之圓極化天線重要參數分析 49
3.5.1等效電路模擬 57
3.5.2具有諧波抑制效果之圓極化天線量測結果與結論 60
第四章 總結 64
參考文獻 65
作者簡介 70

圖目錄
圖2.1:諧波抑制環形槽孔天線結構 8
圖2.2:倒U型DGS槽孔低通濾波器結構 8
圖2.3:模擬之天線S11與濾波器S21比較圖 9
圖2.4:傳統環形槽天線 (a)等效電路模型 (b) ADS模擬電路圖 12
圖2.5:倒U型DGS槽孔低通濾波器(a) 修正等效電路模型(b) ADS模擬電路圖 13
圖2.6:HFSS模擬與ADS模擬(等效電路)之濾波器S參數比較圖 14
圖2.7:諧波抑制環形槽孔天線 (a)等效電路模型 (b) ADS模擬電路 15
圖2.8:HFSS模擬與ADS模擬(等效電路)之天線反射損失比較圖 16
圖2.9:傳統環形槽孔天線與諧波抑制環形槽孔天線模擬阻抗比較圖 17
圖2.10:電流分布圖(a) 2.45 GHz (b) 5.15 GHz (c) 7.5 GHz 19
圖2.11:調整倒U型槽孔長度L1的模擬反射損失圖 21
圖2.12:調整倒U型槽孔寬度W1的模擬反射損失圖 21
圖2.13:調整倒U型槽孔寬度W2的模擬反射損失圖 22
圖2.14:調整倒U型槽孔寬度g的模擬反射損失圖 22
圖2.15:矩形環形槽孔諧波抑制天線(a)天線結構 (b) 反射損失圖 24
圖2.16:三角形環形槽孔諧波抑制天線(a)天線結構 (b)反射損失圖 25
圖2.17:提出之諧波抑制環形槽孔天線的量測與模擬反射損失圖 26
圖2.18:提出之具有諧波抑制效果之環形槽孔天線實體圖 27
圖2.19: 提出之諧波抑制環形槽孔天線與傳統環形槽孔天線在2.45 GHz正規化量測場型比較圖 29
圖2.20:提出之諧波抑制環形槽孔天線與傳統環形槽孔天線在5.15 GHz正規化量測場型比較圖 30
圖2.21:提出之諧波抑制環形槽孔天線與傳統環形槽孔天線在7.5 GHz正規化量測場型比較圖 31
圖2.22 : 提出之諧波抑制天線與傳統環形槽孔天線增益及效率圖 32
圖3.1:Conventional Antenna 至HSCP Antenna 的設計流程 35
圖3.2:Conventional Antenna 至HSCP Antenna的反射損失比較圖 35
圖3.3:環形槽孔圓極化天線結構圖 37
圖3.4:具有諧波抑制效果之槽孔圓極化天線結構圖 37
圖3.5:調整L型槽孔長度L2之模擬 (a)反射損失 (b)軸比 40
圖3.6:傳統環形槽孔天線與提出之圓極化天線模擬輸入阻抗圖 41
圖3.7:傳統環形槽孔天線與提出之圓極化天線Smith圖 41
圖3.8:調整L型槽孔長度L2 之模擬 (a)能量 (b)相位 42
圖3.9:提出之圓極化天線於2.38 GHz的電流分布模擬圖 43
圖3.10:調整L型槽孔寬度g1之模擬 (a)反射損失 (b)軸比 45
圖3.11:調整環形槽孔內徑R1 之模擬 (a)反射損失 (b)軸比 46

圖3.12:提出之圓極化天線量測與模擬 (a)反射損失 (b)軸比 48
圖3.13:提出之圓極化天線實體圖 49
圖3.14:提出之圓極化天線量測與模擬正規化圓極化場型圖 (a) x-z plane(b) y-z plane 50
圖3.15:CP Antenna與HSCP Antenna的模擬 (a)反射損失 (b)軸比 52
圖3.16:CP Antenna與HSCP Antenna的模擬阻抗圖 53
圖3.17:電流分布圖(a) 2.4 GHz (b) 4.8 GHz (c) 7.85 GHz 54
圖3.18:調整倒U型槽孔長度L1 之模擬 (a)反射損失 (b)軸比 56
圖3.19:調整倒U型槽孔寬度W2 之模擬 (a)反射損失 (b)軸比 57
圖3.20:調整倒U型槽孔寬度g之模擬 (a)反射損失 (b)軸比 58
圖3.21:環形槽孔圓極化天線 (a)等效電路模型 (b) ADS模擬電路圖 60
圖3.22:諧波抑制環形槽孔圓極化天線 (a)等效電路(b) ADS模擬 61
圖3.23:HFSS模擬與ADS模擬(等效電路)之天線反射損失比較圖 62
圖3.24:具有諧波抑制效果之圓極化天線(a)反射損失(b)軸比圖 64
圖3.25:提出之具有諧波抑制效果之圓極化環形槽孔天線實體圖 65
圖3.26:提出之具有諧波抑制效果之圓極化天線量測與模擬正規化 圓極化場型圖(a) x-z plane(b) y-z plane 66
圖3.27:CP Antenna與HSCP Antenna的量測增益與效率圖 67
K. Chang, R. York, P. Hall, and T. Itoh, “Active integrated antennas,” IEEE Trans. Microw. Theory and Tech., vol. 50, no. 3, pp. 937-944, Mar. 2002.
[2] D. Segovia-Vargas, D. Castro-Galán, L. E. García-Muñoz, and V. González-Posadas “Broadband Active Receiving Patch With Resistive Equalization,” IEEE Trans. Microw. Theory and Tech., vol. 56, no. 1, pp. 56-64, Jan. 2008.
[3] V. Radisic, Y. Qian, and T. Itoh, “Novel architectures for high- efficiency amplifiers for wireless applications,” IEEE Trans. Microw. Theory and Tech., vol. 46, no. 11, pp. 1901-1909, Nov. 1998.
[4] Y. J. Sung and Y. S. Kim, “An improved design of microstrip patch antennas using photonic bandgap structure,” IEEE Trans. Antennas Propag., vol. 53, no. 5, pp. 1799-1804, May 2005.
[5] M. K. Mandal, P. Mondal, S. Sanyal, and A. Chakrabarty, “An improved design of harmonic suppression for microstrip patch antennas,” Microw. Opt. Technol. Lett., vol. 49, no. 1, pp. 103-105, Jan. 2007.
[6] Y. J. Ren, M. F. Farooqui, and K. Chang, “A compact dual-frequency rectifying antenna with high-orders harmonic-rejection,” IEEE Trans. Antennas Propag., vol. 55, no. 7, pp. 2110-2113, Jul. 2007.
[7] F. R. Hsiao, T. W. Chiou, and K. L. Wong, “Harmonic control of a square microstrip antenna operated at the 1.8 GHz band,” Microw. conf. proceedings Asia-pacific., pp 1052 -1055, Aug. 2001.
[8] V. Radisic, ST Chew, Y. Qian, and T. Itoh, “High efficiency power amplifier integrated with antenna,” IEEE Microw. Guided Wave Lett., vol. 7, no. 2, pp. 39-41, Feb. 1997.
[9] V. Radisic, Y. Qian, and T. Itoh, “Class F power amplifier integrated with circular sector microstrip antenna,” IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, pp. 687-690, Jun. 1997.
[10] Y. Horii and M. Tsutsumi, “Harmonic control by photonic bandgap on microstrip patch antenna,” IEEE Microw. Guided Wave Lett., vol. 9, no. 1, pp.13-48, Jan. 1999.
[11] X. C. Lin and L. T. Wang, “A broadband CPW-Fed loop slot antenna with harmonic control,” IEEE Antennas Wireless Propag. Lett., vol. 2, no. 1, pp. 323-325, 2003.
[12] A.S. Andrenko, Y. Ikeda, and O. Ishida, “Application of PBG microstrip circuits for enhancing the performance of high-density substrate patch antennas,” Microw. Opt. Technol. Lett., vol. 32, no. 5, pp. 340-344, Mar. 2002.
[13] Y. J. Sung, M. Kim, and Y. S. Kim, “Harmonics reduction with defected ground structure for a microstrip patch antenna,” IEEE Trans. Antennas Wireless Propag. Lett., vol. 2, no. 1, pp. 111-113, 2003.
[14] S. Biswas, G. Debatosh, and K. Chandrakanta, “Control of higher harmonics and their radiation in microstrip antennas using compact Defected Ground Structures,” IEEE Trans. Antennas Propag., vol. 61, no. 6, pp. 3349-3353, Jun. 2013.
[15] N. A. Nguyen, R. Ahmad, Y. T. Im, Y. S. Shin, and S. O. Park, “A T-shaped wide-slot harmonic suppression antenna,” IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 647-650, 2007
[16] D. H. Choi, Y. J. Cho, and S. O. Park, “A broadband slot antenna with harmonic suppression,” Microw. Opt. Technol. Lett., vol. 48, no. 10, pp. 1984-1987, Oct. 2006.
[17] N. Boisbouvier, F. Le Bolzer, A. Louzir, A. C. Tarot, and K. Mahdjoubi, “Harmonic-less annular slot antenna (ASA) using a novel PBG structure for slot-line printed devices,” IEEE Antennas Propag. Soc. Int. Symp., vol. 2, pp. 553-556, Jun. 2003.
[18] D. Ahn, J. S. Park, C. S. Kim, J. Kim, Y. Qian, and T. Itoh, “A design of the low-pass filter using the novel microstrip defected ground structure,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 1, pp. 86-93, Jan. 2001.
[19] D. J. Woo, T. K. Lee, J. W. Lee, C. S. Pyo, and W. K. Choi, “Novel U-Slot DGSs for bandstop filter with improved Q factor,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2840-2847, Jun. 2006.
[20] J. S. Park, J. H. Kim, J. H. Lee, S. H. Kim, and S. H. Myung, “A novel equivalent circuit and modeling method for defected ground structure and its application to optimization of a DGS lowpass filter,” IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, pp. 417- 420, Jun. 2002.
[21] S. M. Han, J. Y. Park, and T. Itoh, “Active integrate antenna based rectenna using the circular sector antenna with harmonic rejection,” IEEE antennas and Prop. Soci. Int. Symp., vol. 4, pp. 3533-3536, Jun. 2004.
[22] Z. Harouni, L. Osman, and A. Gharsallah, “Efficient 2.45 GHz rectenna design with high harmonic rejection for wireless power transmission,” Int. Jour. Computer Science Issues, vol. 7, no. 5, pp. 424-427, Sept. 2010.
[23] M. Ali, G. Yang, and R. Dougal, “A new circularly polarized rectenna for wireless power transmission and date communication,” IEEE Trans. Antennas Wireless Propag. Lett., vol. 4, pp. 205-208, 2005.

[24] M. Ali, G. Yang, and R. Dougal, “Miniature circularly polarized rectenna reduced out-of-band harmonics,” IEEE Trans. Antennas Wireless Propag. Lett., vol. 5, pp. 107-110, 2006.
[25] T. C. Yo, C. M. Lee, C. M. Hsu, and C. H. Luo, “Compact circularly polarized rectenna with unbalanced circular slots,” IEEE Trans. Antennas Propag., vol. 56, no. 3, pp. 882-886, Mar. 2008.
[26] F. J. Huang, T. C. Yo, C. M. Lee, and C. H. Luo, “Design of circularly polarization antenna with harmonic suppression for rectenna application,” IEEE Trans. Antennas Wireless Propag. Lett., vol. 11, pp. 592-595, 2012.
[27] J. Sun, X. Yang, and J. Sheng, “Circularly polarized microstrip antenna with harmonics suppression,” Microw. Opt. Technol. Lett., vol. 49, no. 11, pp. 2841-2843, Nov. 2007.
[28] Y. Xu, S. Gong, and T. Hong, “Circularly polarized slot microstrip antenna for harmonics suppression,” IEEE Trans. Antennas Wireless Propag. Lett., vol. 12, pp. 472-475, 2013.
[29] J. S. Rao and B. N. Das, “ Impedance characteristics of transverse slots in the ground plane of a stripline,” Inst. Elec. Eng. Proc., vol. 125, pp. 29-32, Jan. 1978.
[30] Randy Bancroft, Microstrip and Printed Antenna Design, Atlanta, GA: NOBLE, 2004.
[31] J. Y. Sze, C. I. G. Hsu, M. H. Ho, Y. H. Ou, and M. T. Wu, “Design of Circularly polarized annular-ring slot antennas fed by double-bent microstripline,” IEEE Trans. Antennas Propag., vol. 55, no. 11, pp. 3134-3139, Nov. 2007.


[32] H. M. Chen, K. Y. Chiu, Y. F. Lin, and S. A Yeh, “Circularly polarized slot antenna design and analysis using magnetic current distribution for RFID reader applications,” Microw. Opt. Technol. Lett., vol. 54, no. 9, pp. 2016-2023, Sep. 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔