跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/21 12:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:孫慧圻
研究生(外文):Sun Hui Chi
論文名稱:以溶膠-凝膠法製備具可見光催化效能之多孔陶瓷濾材
論文名稱(外文):Preparation of Novel Porous Ceramic Filter with Visible-light-driven Photocatalysis by Sol-gel Method
指導教授:孔祥琜吳俊哲
口試委員:陳錦毅Sambandam Anandana
口試日期:2013-06-16
學位類別:碩士
校院名稱:逢甲大學
系所名稱:環境工程與科學學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:100
中文關鍵詞:溶膠凝膠法氧化鉍多孔陶瓷濾材
外文關鍵詞:Sol-gel methodbismuth oxideporous ceramic filter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:327
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要以溶膠凝膠法製備具可見光應答效能之多孔陶瓷濾材。由於氧化鋁具有高比表面積及多孔性質之特性,故於實驗中將其與二氧化矽混和,並分別探討氧化鋁添加比例、煆燒溫度以及溶膠混和方式不同之影響,混合方式為共同水解 (Co-hydrolysis sol-gel)以及分別膠溶 (Separately peptizing sol-gel)兩種。最後探討添加氧化鉍光觸媒對於陶瓷濾材微結構的影響。
由實驗結果得知,煆燒溫度於450 ℃時,氧化鋁之添加比例以矽-鋁體積比1:1為較佳,且其比表面積可達395.85 m²/g。本研究亦探討共同水解 (CH)與分別膠溶 (SP)兩種混和方式,兩者對於光學特性以及XRD分析並無顯著影響,僅對於比表面積有明顯的差異,並由結果顯示,以分別膠溶 (SP)混合之方式可得到較佳之比表面積。另外,可藉由SEM分析以及比表面積數據發現,當煆燒溫度達300 ℃以上時,顆粒之間產生明顯聚集的現象,導致比表面積減少且孔徑增加之情形。而添加氧化鉍之複合粉末,於煆燒溫度450 ℃時,比表面積可達538.23 m²/g,並能有效之增加可見光吸收度,使能隙達2.4 eV。根據XRD繞射圖結果,於300 ℃與450 ℃時可形成混合相的四方晶系,其中含有β-氧化鉍和四方相之Bi2O2.33,且其有較佳之光學特性。根據TGA分析結果顯示,於300 ℃時會出現一放熱峰,由此更可確定於300 ℃時會產生相轉變。最後,將複合粉末與蔗糖、黏著劑等研磨混合均勻,以浸漬方式將其披覆於210 μm鋼網上,於250 ℃煆燒形成濾材,過濾測試之通量於15至20分鐘後可達一穩定的45 LMH。
In this research, preparation of porous ceramic filter with the ability of visible-light-driven photocatalysis by sol-gel method was studied. This study utilized the mixing of alumina and silica to benefit alumina’s high specific surface area and porous properties.
The study investigated the effects of adding alumina at different calcination temperatures and synthesis of filter materials using co-hydrolysis (CH) and separately peptized (SP). In addition, XRD, SEM, BET, and TGA were used to characterize the composite powder of alumina-silica mixtures doped with bismuth oxide.
The experiments in this study have showed that the volume ratio of alumina to silica at 1:1 using SP method had the best result at a fixed calcination temperature of 450 ℃ and its specific surface area could achieve as high as 395.85 m²/g. Alumina-silica mixtures via the two sol–gel methods as mentioned did not have significant effects on optical properties and crystal-phase structures as observed by XRD. Compared to CH method, SP could result in higher surface area and smaller pore size. According to SEM and BET analyses, aggregation of particles had decreased specific surface area and enlarged pore size when calcination temperature exceeded 300 ℃.
Specific surface area of the composite powder was 538.23 m²/g when the calcination temperature was performed at 450 ℃. Doping with bismuth oxide could effectively increase the harvesting of visible light and, therefore, lowered the direct band gap to 2.4 eV for the alumina-silica mixtures. XRD analysis results of the composite powder synthesized at temperatures of 300~450 ℃ has showed the formation of mixed phases of tetragonal β-Bi2O3 and tetragonal Bi2O2.33. TGA analysis indicated that the exothermic peak appeared at 300 ℃. This peak was demonstrated by the result from XRD analysis. XRD investigations indicated that prepared bismuth oxide were polycrystalline and multiphase. Thus, calcination temperature plays a key role in the composition and optical properties.
Suspensions using 30 vol.% of solids (composite powder and sucrose) and 70 vol.% of liquids (isopropyl alcohol and PVP) were mixed and grinded in a jar. This mixture was coated onto a stainless steel sieve of 210 μm mesh and calcined at 250 ℃ to form a porous ceramic filter. The as-synthesized filter was tested for flux test run and the flux rate was stabilized at 45 LMH after 15 to 20 minutes.
摘要 I
英文摘要 II
圖目錄 VI
表目錄 VIII
第一章 研究導論 1
1-1 研究動機 1
1-2 研究目的 2
第二章 研究背景與文獻回顧 3
2-1 濾材結合光觸媒之相關研究 3
2-1-1國外相關研究現況 3
2-1-2國內相關研究現況 5
2-2 無機薄膜介紹 9
2-2-1 無機膜之基本特性 9
2-2-2 薄膜之種類與分離技術 10
2-2-3 無機薄膜之型態與結構 10
2-2-4 薄膜模組 13
2-3 陶瓷濾材之製備方法與原料特性介紹 15
2-3-1 濾材原料-氧化鋁之介紹 17
2-3-2 濾材原料-二氧化矽 (TEOS) 之介紹 20
2-4 溶膠凝膠法 23
2-4-1溶膠-凝膠法的原理 25
2-4-2影響溶膠-凝膠反應之因素 31
2-5 光觸媒 34
2-5-1 光觸媒定義 34
2-5-2 光觸媒之原理 34
2-5-3 能帶間隙 (Band Gap) 35
2-5-4 氧化鉍之性質 36
第三章 實驗設備與研究方法 38
3-1實驗內容與架構 38
3-2 實驗藥品與儀器設備 39
3-3 實驗方法 40
3-3-1 起始膠體製備 40
3-3-2 複合粉末熱處理條件 45
3-3-3 研磨混和製備濾材之方法 45
3-4 分析方法 45
第四章 結果與討論 51
4-1 複合粉末之物理性質分析 52
4-1-1 TGA 熱行為分析 53
4-1-2 XRD 結晶相鑑定 55
4-1-2 BET 比表面積分析 60
4-1-3 UV-Visible 光學特性分析 64
4-1-5 SEM 粉末微結構型態分析 71
4-1-6 FT-IR表面鍵結分析 74
4-2 陶瓷濾材之微結構觀察 75
4-2-1 溫度影響濾材之披覆 75
4-2-2 濾材披覆之斷面型態 77
4-3 陶瓷濾材之過濾及光降解試驗 80
4-3-1 通量測試 80
4-3-2 光降解測試 81
第五章 結論與建議 83
5-1 結論 83
5-2 建議 85
參考文獻 86
Alem, A., Sarpoolaky, H., and Keshmiri, M., “Sol–gel preparation of titania multilayer membrane for photocatalytic applications”, Ceramics International 35, 1837–1843, (2009).
Akbarnezhad, Sh., Mousavi, S. M., and Sarhaddi, R., “Sol-gel synthesis of alumina-titania ceramic membrane: Preparation and characterization” Indian Journal of Science and Technology Vol. 3 No.10 (2010).
Brinker, C.J., and Scherer, G.W, “Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing”, Academic Press, Inc. (1990).
Changrong, X., Feng, W., Zhaojing, M., Fanqing, L., Dingkun, P., and Guangyao, M., “Boehmite sol properties and preparation of two-layer alumina membrane by a sol-gel process” Journal of Membrane Science 116, 9-16, (1996).
CHEMAT GROUP, “Sol-gel technologies and their products”, http://www.chemat.com/, CHEMAT Technology, Inc. (2010).
Chen, K.C., Tsuchiya, Y., and Mackenzie, J. D., Sol-gel processing of silica I : The role of starting compounds. Journal of Non-Crystalline Solids, 81, 227~237, (1986).
Chen, Z.X., Wang, W.X., Takao, Y., Matsubara, T., and Ren, L.M., “Microstructure and shear fracture characteristics of porous anodic TiO2 layer before and after hot water treatment”, Applied Surface Science 257, 7254–7262, (2011).
Choi, W.Y., Chung, J., Cho, C.H., and Kim, J.O., “Fabrication and photocatalytic activity of a novel nanostructured TiO2 metal membrane”, Desalination 279, 359–366, (2011).

Dimitriev, Y., Krupchanska, M., Ivanova, Y., and Staneva, A., “SOL-GEL SYNTHESIS OF MATERIALS IN THE SYSTEM Bi2O3-SiO2”, Journal of the University of Chemical Technology and Metallurgy, 45, 1, 39-42 (2010)
Fei a, Y.T., Fan, S.J., Sun, R.Y., and Xu, J.Y., “Crystallizing behavior of Bi2O3-SiO2 system”, JOURNAL OF MATERIALS SCIENCE LETTERS 19, 893- 895, (2000).
Fei b, Y., Shift, F., Renying, S., and Ishii, M., “Study on phase diagram of Bi2O3-SiO2 system for Bridgman growth of Bi4Si3O12 single crystal”, Progress in Crystal Growth and Characterization of Materials, 183-188, (2000).
Habibpanah, A.A., Pourhashem, S., and H., Sarpoolaky, “Preparation and characterization of photocatalytic titania–alumina composite membranes by sol–gel methods”, Journal of the European Ceramic Society 31, 2867–2875, (2011).
Hao, Y., Li, J., Yang, X., Wang, X., and Lu, L., “Preparation of ZrO2–Al2O3 composite membranes by sol–gel process and their characterization”, Materials Science and Engineering A 367, 243–247, (2004).
Herguido, J., Lafarga, D., Menhdez, M., and Guimon, C., “Characterization of porous ceramic membranes for their use in catalytic reactors for methane oxidative coupling”, Catalysis Today 25, 263-269, (1995).
Huang, X.R., Meng, G.L., Huang, Z.T., and Geng, J.M., “Preparation of unsupported alumina membrane by sol-gel techniques”, Joumal of Membrane Science 133, 145-150, (1997).
Iler, R.K., “The Chemistry of Silica”, (solubility, polymerization, colloid and surface properties, and biochemistry), Wiley (1979).
Jirhennsons,B., and Straumanis, M.E., “Colloid Chemistry”, McMillan Co. New York (1962).
Oh, H.J., Lee, J.H., Kim, Y.J., Suh, S.J., Lee, J.H., and Chi, C.S., “Surface characteristics of porous anodic TiO2 layer for biomedical applications”, Materials Chemistry and Physics, 109, 10–14, (2008).
Socrates, G., “Infrared Characteristics Group Frequencies”, Wiley, New York, NY, (1980).
Soitah, Timonah N., Chunhui, Y., Yong, Y., Yinghua, N., and Liang, S., “Properties of Bi2O3 thin films prepared via a modified Pechini route”, Current Applied Physics 10, 1372~1377, (2010).
Wang, Y.H., Liu, X.Q., and Meng, G.Y., “Preparation and properties of supported 100% titania ceramic membranes”, Materials Research Bulletin 43, 1480–1491, (2008).
Weidong, H., Wei, Q., Xiaohong, W., Xianbo, D., Long, C., and Zhaohua, J., “The photocatalytic properties of bismuth oxide films prepared through the sol–gel method”, Thin Solid Films 515, 5362–5365, (2007).
Winter, R., Chan, J.B., Frattini, R., and Jonas, J., “The effect of fluoride on the sol-gel process”, J. Non-Crystalline Solids, 105, 214-222, (1988).
Xiaohong, W., Wei, Q., and Weidong, H., “Thin bismuth oxide films prepared through the sol–gel method as photocatalyst”, Journal of Molecular Catalysis A: Chemical 261, 167–171, (2007).
Yu, X., Li, Y., Wlodarski, W., Kandasamy, S., and Kalantar-Zzadeh, K., “Fabrication of nanostructured TiO2 by anodization: A comparison between electrolytes and substrates”, Sensors and Actuators B 130, 25–31, (2008).
Zhang, H., Quan, X., Chen, S., Zhao, H., and Zhao, Y., “Fabrication of photocatalytic membrane and evaluation its efficiency in removal of organic pollutants from water”, Separation and Purification Technology 50, 147–155, (2006).
Zhang, G., Lu, F., Li, M., Yang, J., Zhang, X., and Huang, B., “Synthesis of nanometer Bi2WO6 synthesized by sol–gel method and its visible-light photocatalytic activity for degradation of 4BS”, Journal of Physics and Chemistry of Solids 71, 579–582, (2010).
李九龍、蔡弘輝,「電解液中添加粒子對微弧氧化陶瓷膜之影響」,碩士論文,龍華科技大學工程技術研究所,2009。

林佩蓉、黃紀嚴,「利用溶膠凝膠法製備二氧化鈦-活性碳複合粉末及光催化效果之研究」,碩士論文,國立成功大學資源工程學系,2007。
垰田博史,「光觸媒圖解」,商周出版社,2003。
洪崇軒、林思妤,「應用TiO2/ITO複合光觸媒薄膜電極光電催化分解水中磺醯胺類化合物研究」,碩士論文,國立高雄第一科技大學環境與安全衛生工程研究所,2011。
陳慧英,“溶膠凝膠法在薄膜製備上之應用”,化工技術,第80期,11月1999。
陳珮如、洪崇軒,「孔洞型二氧化鈦薄膜之製備及其光催化活性分析」,碩士論文,國立高雄第一科技大學環境與安全衛生工程研究所,2010。
張天益,「利用溶膠-凝膠法製備鋯鈦酸鉛陶瓷塊材與薄膜之研究」,博士論文,國立成功大學材料科學及工程學系,2007。
張章堂、李雅文,「利用Pt/TiO2光觸媒薄膜反應器處理含氯揮發性有機污染物之研究」,碩士論文,國立宜蘭大學環境工程學系,2010。
許春耀、楊偉仁,「磁控濺鍍沉積TiO2光觸媒薄膜之研究」,碩士論文,龍華科技大學工程技術研究所,2009。
黃奕中,「多孔性二氧化矽低介電常數薄膜製備與奈米機械性質之研究」,碩士論文,國立中興大學材料工程研究所,2006。
童國倫、凌德成,「以高溫水蒸氣誘導電漿熔射法製備多孔性氧化鋁薄膜」,碩士論文,國立臺灣大學化學工程研究所,2007。

楊子寬,「利用溶膠凝膠法製備TiO2-Al2O3 粉末及對TiO2光催化效果影響之研究」,碩士論文,國立成功大學資源工程研究所,2004。
董恩一,「溶膠凝膠法製備氧化鋁複合薄膜及特性分析」,碩士論文,國立聯合大學化學工程學系,2007。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊