跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/26 07:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭騰元
研究生(外文):Teng-Yuan Kuo
論文名稱:利用 NMP 製備含有細胞膜上碳水化合物的醣類聚合物
論文名稱(外文):Preparation of Glycopolymer Containing Cell Surface Carbohydrates by Nitroxide-Mediated Polymerization
指導教授:張哲健
指導教授(外文):Che-Chien Chang
口試委員:高華生何郡軒
口試委員(外文):Hua-Sheng GaoJinn-Hsuan Ho
口試日期:2013-11-19
學位類別:碩士
校院名稱:輔仁大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:中文
論文頁數:169
中文關鍵詞:NMP醣類聚合物細胞膜碳水化合物
外文關鍵詞:glycopolymercell surfacecarbohydratenitroxidemediatepolymerizationpolymerglyco
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  首先利用 D-甘露糖 (D-mannose) 當起始物,乙醯基 (acetyl) 做為羥基的保護基,再進行醣基化反應得到 styryl-TEMPO 上有醣類的起始劑。先設計在醣類與苯乙烯結構中間,加入乙二醇 (ethylene glycol) 當間隔,合成出含有甘露糖及唾液酸 (sialic acid) 的單體,並以 TEMPO 進行聚合反應後得到醣類聚合物,其 PDI 數值較差且偏高的結果,推測可能是醣類立體結構的影響,造成控制聚合效率的下降,而醣類聚合物、去 Ac 保護後的聚合物以及水解醣類後的聚合物,則可以經由 1H NMR 圖譜獲得證實。
  為了改善聚合效率,我們改用二伸乙甘醇 (diethylene glycol) 做為間隔,合成出含甘露糖及唾液酸的化合物單體,其聚合反應的研究發現,此方法能有效的提升聚合效率,得到高轉換率及在控制範圍內的 PDI。寡醣的部分,利用合成方法可以得到含有 LacNAc 的單體,但在合成 Sialyl-LacNAc 時,卻沒有得到目標產物。我們對 LacNAc 單體也作了聚合的相關研究,其聚合的轉換率偏低,但 PDI 卻有不錯的結果。此外,以 polymeric-TEMPO 為起始劑,進行三次聚合反應證實 TEMPO 具有活性的特性,利用此方法我們有能力合成出含有三種醣類分子的醣類聚合物。

At first, mannose was used as the starting material and acetyl group was used for protection of all hydroxyl groups. Further glycosylation afforded a structure of styryl-TEMPO, attaching with a carbohydrate, as our desired initiator. To prepare the glymonomers containing mannose or sialic acid, we designed to connect the carbohydrates and styrene with ethylene glycol as the spacer. TEMPO-mediated polymerization gave the desired glycopolymers. However, the PDIs are not narrow. Due to the possible steric hindrance during the entire polymerization, bulky carbohydrates structures decreased the efficiency of controlled radical polymerization reactions. Characterization of acetyl-protected glycopolymers, glycopolymers without acetyl groups, and hydrolyzed polymers without carbohydrates were confirmed by 1H NMR spectra.
To improve the polymerization efficiency, diethylene glycol was used as the spacer to synthesize the glycomonomers containing mannose or sialic acid. The polymerization did work well to provide good conversion and reasonable PDIs. For the synthesis of oligosaccharides, glycomonomer containing LacNAc was successfully prepared. Further glycosylation reaction with sialic acid donor to give Sialy-LacNAc was not successful. TEMPO-mediated polymerization of glycomonomer containing LacNAc provided the desired glycopolymers with quite low conversion but narrow PDIs. To show living character, glycopolymers containing three different carbonhydrate ligands were successfully prepared through tandem radical polymerization.

摘要 i
英文摘要 ii
簡稱對照表 iii
目錄 iv
圖目錄 vi
表目錄 vii
一、 緒論
1. 碳水化合物與醣類聚合物的重要性 1
2. 利用 NMP 合成醣類聚合物 3
二、 結果與討論
1. 合成甘露糖單體及甘露糖聚合物
1.1 合成含有甘露糖的起始劑 14
1.2 合成甘露糖單體與甘露糖聚合物 19
2. 合成唾液酸單體與唾液酸聚合物
2.1 唾液酸作為予體化合物進行反應 28
2.2 利用極性互換進行反應 30
2.3 變旋異構碳以氯取代進行反應 31
2.4 合成唾液酸聚合物 33
3. 以二伸乙甘醇為間隔合成醣類單體及其聚合物
3.1 甘露糖及唾液酸的合成及聚合 35
3.2 合成 sialyl-LacNAc 的單體 39
3.3 合成 LacNAc 之聚合物 43
4. 利用 TEMPO 特性合成含有多種醣類的聚合物
4.1 以苯乙烯為單體進行三次聚合 44
4.2合成多種醣類的聚合物 46
三、 結論 48
四、 實驗部分 50
五、 參考文獻 86
六、 附錄 93

1.(a) Linhardt, R. J.; Toida, T. Carbohydrates in drug design. New York: Marcel Dekker, 1997. (b) Ladmiral, V.; Melia, E.; Haddleton, D. M. Eur. Polym. J. 2004, 40, 431–449.
2.Goa, K. L.; Benfield, P. Drugs 1994, 47, 536–566.
3.McAlindon, T. E.; LaValley, M. P.; Gulin, J. P.; Felson, D. T. J. Am. Med. Assoc. 2000, 283, 1469–1475.
4.(a) Dwek, R. A. Chem. Rev. 1996, 96, 683–720. (b) Sharon, N.; Lis, H. Sci. Am. 1993, 268, 82–89.
5.Sharon, N.; Lis, H. Science 1989, 246, 227–234.
6.(a) Simanek, E. E.; McGarvey, G. J.; Jablonowski, J. A.; Wong, C. H. Chem. Rev. 1998, 98, 833–862. (b) Lee, Y. C.; Lee, R. T. Acc. Chem. Res. 1995, 28, 321–327.
7.(a) Muthukrishnan, S.; Jutz, G.; Andre, X.;Mori, H.; Muller, A. H. E. Macromolecules 2005, 38, 9–18. (b) Muthukrishnan, S.; Mori, H.; Muller, A. H. E. Macromolecules 2005, 38, 3108–3119.
8.(a) Ejaz, M.; Ohno, K.; Tsujii, Y.; Fukuda, T. Macromolecules 2000, 33, 2870–2874. (b) Ohno, K.; Tsujii, Y.; Fukuda, T. J. Polym. Sci. Part A: Polym. Chem. 1998, 36, 2473–2481.
9.(a) Albertin, L.; Stenzel, M.; Barnerkowollik, C.; Foster, L. J. R.; Davis, T. P. Macromolecules 2005, 38, 9075–9084. (b) Albertin, L.; Stenzel, M.; Barnerkowollik, C.; Foster, L. J. R.; Davis, T. P. Macromolecules 2004, 37, 7507–7513. (c) Albertin, L.; Kohlert, C.; Stenzel, M.; Foster, L. J. R.; Davis, T. P. Biomacromolecules 2004, 5, 255–260.
10.(a) Ohno K.; Tsujii, Y.; Miyamoto, T.; Fukuda, T. Macromolecules 1998, 31, 1064–1069. (b) Ohno, K.; Izu, Y.; Yamamoto, S.; Miyamoto, T.; Fukuda, T. Macromol. Chem. Phys. 1999, 200, 1619–1625.
11.(a) Chen, Y.; Wulff, G. Macromol. Chem. Phys. 2001, 202, 3273–3278. (b) Chen, Y.; Wulff, G. Macromol. Chem. Phys. 2001, 202, 3426–3431.
12.Gotz, H.; Harth, E.; Schiller, S.; Frank, C. W.; Knoll, W.; Hawker, C. J. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 3379–3391.
13.(a) Narumi, A.; Satoh, T.; Kaga, H.; Kakuchi, T. Macromolecules 2002, 35, 699–705. (b) Kaga, H.; Narumi, A.; Satoh, T.; Mohd, T. M.; Sharfudin; Kakuchi, T. Macromol. Symp. 2002, 181, 95–100. (c) Narumi, A.; Matsuda, T.; Kaga, H.; Satoh, T.; Kakuchi, T. Polymer 2002, 43, 4835–4840. (d) Narumi, A.; Otsuka, I.; Matsuda, T.; Miura, Y.; Saton, T.; Kaneko, N.; Kaga, H.; Kakuchi, T. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 3978–3985.
14.Simon Ting, S. R.; Min, E. H.; Escale, P.; Save, M.; Billon, L.; Stenzel, M. H. Macromolecules 2009, 42, 9422–9434.
15.(a) Becer, C. R.; Babiuch, K.; Pilz, D.; Hornig, S.; Heinze, T.; Gottschaldt, M.; Schubert, U. S. Macromolecules 2009, 42, 2387–2394. (b) Babiuch, K.; Wyrwa, R.; Wagner, K.; Seemann, T.; Hoeppener, S.; Becer, C. R.; Linke, R.; Gottschaldt, M.; Weisser, J.; Schnabelrauch, M.; Schubert, U. S. Biomacromolecules 2011, 12, 681–691.
16.Koketsu, D.; Kobayashi, K.; Miura, Y. Polym. Adv. Technol. 2007, 18, 647–651.
17.Marion, K. B.; Studer A. Macromol. Rapid Commun. 2009, 30, 1043–1057
18.(a) Angata, T.; Varki, A. Chem. Rev. 2002, 102, 439469. (b) Rosenberg, A. Biology of Sialic Acids, Plenum, New York, London, 1995.
19.Varki, A.; Cummings, R.; Esko, J.; Freeze, H.; Hart, G.; Marth, J., Essential of Glycobiology, Cold Spring Harbor Laboratory Press, New York, 1999.
20.Thomson, R.; von Itzstein, M., Nacetylneuraminic acid derivatives as antiinfluenza agent in CarbohydrateBased Drug Discovery, (Eds.: Wong, C.H.), WileyVCH, Weinheim, 2003.
21.(a) von Itzstein, M.; Wu, W. Y.; Kok, G. B.; Pegg, M. S.; Dyason, J. C.; Jin, B.; Van, P. T.; Smythe, M. L.; White, H. F.; Oliver, S. W. Nature 1993, 363, 418423. (b) Kim, C. U.; Lew, W.; Williams, M. A.;Liu, H.; Zhang, L.; Swaminathan, S.; Bischofberger, N.; Chen, M. S.; Mendel, D. B.; Tai, C. T.; Laver, W. G.; Stevens, R. C. J. Am. Chem. Soc. 1997, 119, 681690. (c) Moscona, A.; N. Engl. J. Med. 2005, 353, 13631373.
22.(a) Van Boeckel, C. A. Recl. Trav. Chim. PaysBas 1986, 105, 35. (b) Yogees Waren, G.; Salk, P. C. Science 1981, 212, 1514.
23.(a) Ladmiral, V.; Melia, E.; Haddleton, D. M. Eur. Polym. J. 2004, 40, 431449. (b) Sigal, G. B.; Mammen, M.; Dahmann, G.; Whitesides, G. M. J. Am. Chem. Soc. 1996, 118, 16. (c) Godula, K.; Bertozzi, C. R. J. Am. Chem. Soc. 2010, 132, 9963–9965.
24.(a) Matsuoka, K.; Furuike, T.; Ishii, S.; Kurita, K.; Nishimura, S.I. Macromolecules 1991, 24, 42364241. (b) Matsuoka, K.; Nishimura, S.I. Macromolecules 1994, 27, 157163. (c) Furuike, T.; Matsuoka, K.; Maruyama, K.; Nagata, K.; Kurita, K.; Nishi, N.; Tokura, S.; Nishimura, S.I. Macromolecules 1994, 27, 48764880. (d) Matsuoka, K.; Nishimura, S.I. Macromolecules 1995, 28, 29612968. (e) Furuike, T.; Nishi, N.; Tokura, S.; Nishimura, S.I. Macromolecules 1995, 28, 72417247.
25.Chang, C.–C.; Studer, A. Macromolecules 2006, 39, 4062–4068.
26.(a) Molawi, K.; Studer, A. Chem. Commun. 2007, 5173–5175. (b) Kaim, A.; Cyranski, M. K.; Megiel, E. J. Phys. Org. Chem. 2010, 23, 1146–1154.
27.Woodworth, B. E.; Zhang, X.; Gaynor, S. G.; Metzner, Z.; Matyjaszewski, K. Macromolecules 1998, 31, 5955–5957.
28.Timmons, S. C.; Jakeman, D. L. Org. Lett. 2007, 9, 1227–1230.
29.Cuarcuabal, P.; Hunig, I.; Gamblin, D. P.; Liu, B.; Jockusch, R. A.; Kroemer, R. T.; Snoek, L. C.; Fairbanks, A. J.; Davis, B. G.; Simons, J. P. J. Am. Chem. Soc. 2006, 128, 1976–1981.
30.Gericke, K. M.; Guntner, C.; Tietze, L. F. Eur. J. Org. Chem. 2006, 21, 4910–4915.
31.Kuromatsu, K.; Suwa, K.; Koizumi, K.; Shingu, T.; Utamura, T. Chem. Pharm. Bull. 1986, 34, 2341–2353.
32.Lin, Y. A.; Chalker, J. M.; Davis, B. G. J. Am. Chem. Soc. 2010, 132, 16805–16811.
33.Rye, C. S.; Withers, S. G. J. Am. Chem. Soc. 2002, 124, 9756–9767.
34.Kim, K. S.; Kim, J. H.; Lee, Y. J.; Lee, Y. J.; Park, J. J. Am. Chem. Soc. 2001, 123, 8477–8481.
35.Filippini, M.; Pianetti, I.; Pasini, D.; Pregnolato, M. Adv. Synth. Catal. 2007, 349, 971– 978.
36.Li, Z. C.; Liang, Y. Z.; Chen, G. Q.; Li, F. M. Macromol. Rapid Commun. 2000, 21, 375–380.
37.Hattori, I.; Miyase, T.; Ueno, A.; Hara, S.; Kageyama, C.; Umehara, K. Chem. Pharm. Bull. 1988, 36, 5004–5008
38.(a) Li, W.; Crich, D. J. Org. Chem. 2007, 72, 2387–2391. (b) Shih, C. H.; Su, Y. T.; Yao, C. H.; Lian, J. F.; Liao, C. C.; Hsia, C. W.; Shui, H. A.; Rani, R.; Tsai, Y. F. Org. Biomol. Chem. 2012, 10, 931–934. (c) Ren, C. T.; Chen, C. S.; Yu, Y. P.; Tsai, Y. F.; Lin, P. Y.; Chen, Y. J.; Zou, W.; Wu, S. H. Chem. Eur. J. 2003, 9, 1085–1095. (d) Shelke, S. V.; Gao, G. P.; Mesch, S.; Gathje, H.; Kelm, S.; Schwardt, O.; Ernst, B. Bioorg. Med. Chem. 2007, 15, 4951–4965. (e) Miyamoto, K.; Sato, M.; Ikeda, K. Tetrahedron Lett. 2007, 48, 7431–7435.
39.Martin, T. J.; Brescello, R.; Toepfer, A.; Schmidt, R. R. Glycoconjugate J. 1993, 10, 16–25.
40.Kartha, K. P. R.; Aloui, M.; Field, R. A. Tetrahedron Lett. 1996, 37, 8807–8810.
41.Marra, A.; Sinay, P. Carbohydr. Res. 1989, 187, 35–42.
42.Cai, T. B.; Lu, D.; Tang, X.; Zhang, Y.; Landerholm, M.; Wang, P. G. J. Org. Chem. 2005, 70, 3518–3524.
43.Neira, S.; Sabesan, S. Carbohydr. Res. 1992, 223, 169–185.
44.Shelke, S. V.; Cutting, B.; Jiang, X.; KoliwerBrandl, H.; Strasser, D. S.; Schwardt, O.; Kelm, S.; Ernst, B. Angew. Chem. Int. Ed. 2010, 49, 5721 –5725.
45.Bini, D.; Gregori, M.; Cosentino, U.; Moro, G.; Canales, A.; Capitoli, A.; JimenezBarbero, J.; Cipolla, L. Carbohydr. Res. 2012, 354, 21–31.
46.Miyoshi, S.; Nakabayashi, S.; Yamada, H.; Ito, Y.; Higashi, K. Chem. Pharm. Bull. 1992, 40, 2300–2303.
47.He, R.; Toy, P. H.; Lam, Y. Adv. Synth. Catal. 2008, 350, 54–60.
48.(a) Deng, J.; Sheng, Z.; Zhou, K.; Duan, M.; Yu, C. Y.; Jiang, L. Bioconjugate Chem. 2009, 20, 533–537. (b) Campo, V. L.; SestiCosta, R.; Carneiro, Z. A.; Silva, J. S.; Schenkman, S.; Carvalho, I. Bioorg. Med. Chem. 2012, 20, 145–156.
49.(a) Numata, M.; Sugimoto,M.; Shibayama, S.; Ogawa, T. Carbohyd. Res. 1988, 174, 7385. (b) Richard, I.; Duclos, Jr. Carbohyd. Res. 2000, 328, 489–507. (c) Xue, J.; Pan, Y.; Guo, Z. Tetrahedron Lett. 2002, 43, 1599–1602. (d) Onaga, T.; Mori, T.; Sakamoto, J.I.; Koyama, T.; Sakairi, N.; Hatano, K.; Terunuma, D.; Matsuoka, K. Tetrahedron Lett. 2004, 45, 9383–9386. (e) Fukuyo, J.; Sato, K.; Sato, M.; Ikeda, K. Chem. Pharm. Bull. 2005, 53, 14901493. (f) Dziadek, S.; Brocke, C.; Kunz, H. Chem. Eur. J. 2004, 10, 41504162. (g) Kurosu, M.; Kitagawa, I. J. Carbohyd. Chem. 2006, 25, 427439. (h) Ercegovic, T.; Magnusson, G. J. Org. Chem. 1996, 60, 33783384. (i) Haberman, J. M.; Gin, D. V. Org. Lett. 2001, 3, 11.
50.Allman, S. A.; Jensen, H. H.; Vijayakrishnan, B.; Garnett, J. A.; Leon, E.; Liu, Y.; Anthony, D. C.; Sibson, N. R.; Feizi, T.; Matthews, S.; Davis, B. G. Chem. Bio. Chem. 2009, 10, 2522–2529.
51.Orth, R.; Pitscheider, M.; Sieber, S. A. Synthesis 2010, 13, 22012206.
52.AmvamZollo, P. H.; Sinay, P. Carbohyd. Res. 1986, 150, 199–212.
53.Saavedra, O. M.; Mascitti, V.; Marterer, W.; Oehrlein, R.; Mak, C.P., Hanessian, S. Tetrahedron 2001, 57, 32673280.
54.Ghani, M. A. A.; Abdallah, D.; Kazmaier, P. M.; Keoshkerian, B.; Buncel, E. Can. J. Chem. 2004, 82, 1403–1412.
55.Sutherland, H. S.; Palmer, B. D.; Kmentova, I.; Blaser, A.; Franzblau, S. G.; Wan, B.; Wang, Y.; Ma, Z.; Denny, W. A.; Thompson, A. M. J. Med. Chem. 2011, 54, 6563–6585.
56.Yurt, S.; Anyanwu, U. K.; Scheintaub, J. R..; Coughlin, E. B.; Venkataraman, D. Macromolecules 2006, 39, 16701672.
57.Polakova, M.; Roslund, M. U.; Ekholm, F. S.; Saloranta, T.; Leino, R. Eur. J. Org. Chem. 2009, 6, 870–888.
58..Nobrega, C.; Vazquez, J. T. Tetrahedron: Asymmetry 2003, 14, 27932801.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top