跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/10 12:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃建維
研究生(外文):Jian-Wei Huang
論文名稱:絕緣覆矽波導適用之高效率光柵耦合器系統化設計
論文名稱(外文):Systematic Design of a Highly Efficient Grating Coupler for SOI Waveguides
指導教授:陳淮義
指導教授(外文):Huai-Yi Chen
口試委員:陳淮義李耀仁賴瓊惠
口試委員(外文):Huai-Yi ChenYao-Ren LiQiong-Hui Lai
口試日期:2013-05-31
學位類別:碩士
校院名稱:華梵大學
系所名稱:電子工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:95
中文關鍵詞:SOI基板光柵耦合器光纖耦合效率漸變蝕刻區域二進制閃耀光柵
外文關鍵詞:SOI substrategrating couplersfiber coupling efficiencygradually etched regionbinary blazed grating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用有限差分時域法(FDTD)光學模擬軟體,在SOI基板上蝕刻出一套有系統變化的漸變蝕刻光柵,整套模擬分為未含DBR結構及含DBR結構兩大類,然後又分成相同結構參數變化的各五組(Case 1~102)進行探討。上述兩大類的最佳結果,分別是未含DBR Case 47(Lge中光柵蝕刻深度的順序為16 nm, 32 nm, 48 nm, 80nm)經MOST 13最佳化模擬加上DBR結構,其光纖耦合效率為84%,1 dB頻寬為68 nm及含DBR Case 16(Lge中光柵蝕刻深度的順序為20 nm, 30 nm, 40 nm, 50 nm, 60 nm, 70 nm, 80 nm)的MOST 10結構,其光纖耦合效率為85%,1 dB頻寬為62 nm。

另一方面,本文亦進行多晶矽二進制閃耀光柵耦合器的評估設計,在入射光波長1.55 μm下,其光纖耦合效率為40%,1 dB頻寬為 17 nm,而在波長1.557 μm時的光纖耦合效率為60%。

關鍵詞:SOI基板、光柵耦合器、光纖耦合效率、漸變蝕刻區域和二進制閃耀光柵

In this thesis, we used finite-difference time-domain (FDTD) optical simulation software to systematically design a gradually etched grating on the SOI substrate. The entire simulation contained a structure with and without DBR. The discussion was divided into two categories and five groups (case 1~102) with the same structural parameters. Among these simulations, the fiber coupling efficiency and the 1 dB bandwidth changed differently and the center wavelength would swift to longer or shorter wavelength. The best results for the above two categories was case 47 without DBR (The sequence of etched grating depth in Lge was 16 nm, 32 nm, 48 nm and 80nm) after MOST 13 optimum simulation and addition of DBR structure. Its fiber coupling efficiency was 84% and 1 dB bandwidth was 68 nm as well as the case 16 with DBR (The sequence of etched grating depth in Lge was 20 nm, 30 nm, 40 nm, 50 nm, 60 nm, 70 nm, and 80 nm) after MOST 10 optimum simulation. Its optical coupling efficiency was 85%, and 1 dB bandwidth was 62 nm.

On the other hand, we also evaluated and designed binary blazed grating based on poly-silicon. For the incident light with the wavelength of 1.55 μm, the optical coupling efficiency was 40%, and 1 dB bandwidth was 17 nm. In addition, for the wavelength of 1.557 μm, the fiber coupling efficiency was 60%.

Keywords: SOI substrate, grating couplers, fiber coupling efficiency, gradually etched region and binary blazed grating

第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機與目的 10
1.4 論文架構 10
第二章 原理介紹 11
2.1 光柵原理 11
2.2 光柵耦合器原理 12
第三章 具有漸變蝕刻深度的高效率均勻光柵耦合器系統化設計 16
3.1 設計內容 16
3.2 結果與討論 19
3.2.1 未含分散式布拉格反射鏡結構之元件設計 19
3.2.1.1 漸變蝕刻區域斜率改變結構之模擬結果 19
3.2.1.2 漸變蝕刻區域逐次往右減少一個週期結構之模擬結 20
果 20
3.2.1.3 漸變蝕刻區域逐次往左減少一個週期結構之模擬結果 22
3.2.1.4 漸變蝕刻區域逐次往右填滿一個週期結構之模擬結果 23
3.2.1.5 漸變蝕刻區域逐次往左填滿一個週期結構之模擬結果 25
3.2.1.6 元件設計最終結果及最佳化 26
3.2.2 含分散式布拉格反射鏡結構之元件設計 33
3.2.2.1 漸變蝕刻區域斜率改變結構之模擬結果 33
3.2.2.2 漸變蝕刻區域逐次往右減少一個週期結構之模擬結果 34
3.2.2.3 漸變蝕刻區域逐次往左減少一個週期結構之模擬結果 36
3.2.2.4 漸變蝕刻區域逐次往右填滿一個週期結構之模擬結果 38
3.2.2.5 漸變蝕刻區域逐次往左減填滿一個週期結構之模擬結果 39
3.2.2.6 元件設計最終結果及最佳化 41
第四章 具完全蝕刻的多晶矽二進制閃耀光柵耦合器設計 46
4.1 設計內容 46
4.2 結果與討論 48
第五章 結論與未來研究方向 49
附錄 50
1. 有限差分時域法(FDTD)光學模擬軟體使用介紹 50
2. 遺傳基因演算法(MOST)最佳化模擬軟體使用介紹 67
3. 改善FDTD光學模擬軟體中元件模擬頻寬過大的問題 70
4. 完成之前未含分散式布拉格反射鏡之非均勻光柵耦合器未完成的MOST最佳化 72
參考文獻 78

[1]R. A. Soref and J. P. Lorenzo, “All-silicon active and passive guided-wave components for λ =1.3 and 1.6 μm”, IEEE J. Quantum Elect. 22, p. 873-879, 1986.
[2]R. A. Soref and B. R. Bennett, “Electro-optical effects in silicon”, IEEE J. Quantum Elect. 23, p. 123-129, 1987.
[3]L. Zimmermann, T. Tekin, H. Scbroeder, P. Dumon and W. Bogaerts, IEEE LEOS News. 22 , p. 4-14, 2008.
[4]G. Roelkens, D. V. Thourhout and R. Baets, “High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers”, Opt. Lett. 32, p. 1495-1497, 2007.
[5]Y. Tang, Z. Wang, L. Wosinski, U. Westergren and S. He, “Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits”, Opt. Lett. 35, p. 1290-1292, 2010.
[6]Z. Wang, Y. Tang, L. Wosinski and S. He, “Experimental Demonstration of a High Efficiency Polarization Splitter Based on a One-Dimensional Grating With a Bragg Reflector Underneath”, IEEE Photonic Tech. L. 22, p. 1568-1570, 2010.
[7]Chao Qiu, Zhen Sheng, “Poly-Silicon Grating Couplers for Efficient Coupling With Optical Fibers”, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 24, NO. 18, 2012.
[8]Wei Zhou, Junbo Yang, Hualiang Zhang, Xiujian Li and Juncai Yang, “Design of High-Efficiency Fully-Etched Binary Blazed Gratings Nearly Vertical Coupler”, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 24, NO. 12, 2012.
[9]Nannicha Hattasan, Bart Kuyken, Francois Leo, Eva M. P. Ryckeboer, Diedrik Vermeulen and Gunther Roelkens, “High-Efficiency SOI Fiber-to-Chip Grating Couplers and Low-Loss Waveguides for the Short-Wave Infrared”, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 24, NO. 17, 2012.
[10]C. Alonso-Ramos, L. Zavargo-Peche, A. Ortega-Moñux, R. Halir, I. Molina-Fernández and P. Cheben, “Polarization-independent grating coupler for micrometric silicon rib waveguides”, OPTICS LETTERS Vol. 37, No. 17, 2012.
[11]Miguel Cabezón, Ignacio Garcés, Asier Villafranca, José Pozo, Pragati Kumar and Andrzej Kaźmierczak, “Silicon-on-insulator chip-to-chip coupling via out-of-plane or vertical grating couplers”, Optical Society of America OCIS codes:130. 3120, 050. 2770, 2012.
[12]Maziar M. Naiini, Christoph Henkel, Gunnar B. Malm, Mikael Ostling, “ALD high-k layer grating couplers for single and double slot on-chip SOI photonics”, Solid-State Electronics. 74 p. 58–63 2012.
[13]Akio Mizutani, Kimihiro Mizuno, Youhei Etou and Hisao Kikuta, “Integrated-optic subwavelength triangle array for vertical coupling between optical fiber and Si waveguide”, Opto-Electronics and Communications Conference Technical Digest, 2012.
[14]Zanyun Zhang, Zan Zhang, Beiju Huang, “CMOS-Compatible Vertical Grating Coupler With Quasi Mach–Zehnder Characteristics”, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 25, NO. 3, 2013.
[15]Y. Tang, “Study on electroabsorption modulators and grating couplers for optical interconnects”, Ph.D. Thesis, KTH Royal Institute of Technology, Sweden, 2010.
[16]R. A. Villalaz, “Volume grating couplers for optical interconnects: analysis, design, fabrication and testing”, Ph.D. Thesis, Georgia Institute of Technology, USA, 2004.
[17]Shankar Kumar Selvaraja, Diedrik Vermeulen, “Highly efficient grating coupler between optical fiber and silicon photonic circuit”, Optical Society of America OCIS codes:230. 3120, 2009.
[18]Kai Chun Yang, “Design of high efficiency grating couplers using silicon nitride on Silicon-on-Insulator substrates”, Thesis submitted to Department of Electronic Engineering of the Huafan University in partial fulfilment of the requirement for the degree of Master of Science, 2009.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top