(54.236.58.220) 您好!臺灣時間:2021/03/09 15:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳彥如
研究生(外文):Yen-Ju Chen
論文名稱:烏拉草萃取物之化妝品活性及其聚山梨醇酯海藻酸鈣微膠囊之製備
論文名稱(外文):Cosmetic Activities of Carex meyeriana Kunth Extract and Preparation of its Polysorbate Calcium Alginate Microcapules
指導教授:徐照程徐照程引用關係
指導教授(外文):Jaw-Cherng Hsu
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:化妝品科技研究所
學門:民生學門
學類:美容學類
論文種類:學術論文
畢業學年度:101
語文別:中文
論文頁數:92
中文關鍵詞:烏拉草抗氧化抗發炎美白防矖化妝品微膠囊海藻酸鈣
外文關鍵詞:Carex meyeriana Kunthantioxidant activityanti-inflammatory activitywhiteningsunscreensunscreencosmeticmicrocapsulecalcium alginate
相關次數:
  • 被引用被引用:1
  • 點閱點閱:549
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:166
  • 收藏至我的研究室書目清單書目收藏:0
本研究以乙醇萃取烏拉草 (學名:Carex meyeriana Kunth) 之莖葉,分析其抗氧化、抗發炎、美白抑制酪胺酸酶、UV吸光值、UV防護能力及光安定性等化妝品活性。烏拉草於中藥藥理上有袪寒、除濕、活絡、止痛、抗菌等功效,但文獻中未見其於化妝品之應用。並將烏拉草實際添加於化妝品噴霧防矖乳液配方中,觀察其安定性是否符合市售貨架規範。
萃取方式以乙醇浸泡烏拉草之莖葉24小時,再減壓濃縮、真空乾燥24小時,得到墨綠色浸膏,萃取率為5.15%。主要成分以HPLC方式分析木犀草素 (Luteolin) 之含量,結果為木犀草素占浸膏含量的1.83%,數據顯示為百里香萃取 (Thyme extract) 之4.7倍。
抗氧化部分總酚含量為196.6 mg GAE/g,DPPH自由基清除能力測定IC50為58.86ppm,數據顯示抗氧化能力高於龍膽萃取物 (Gentian extract) 及五倍子 (Rhus chinensis Mill) 等中草藥萃取物。而1%烏拉草萃取物超氧自由基清除率之Trolox 當量抗氧化能力 (TEAC) 值為0.40 mM。
抑制5-脂質氧合酶 (5-LOX) 抗發炎之IC50為277ppm約為尿囊素 (Allantoin) 之1.14倍。實驗顯示烏拉草萃取物有良好的抗發炎效果。美白效果評估以抑制酪胺酸酶活性試驗,IC50為37ppm約為麴酸之39%。為菠蘿蜜( Artocarpus heterophyllus)萃取液之2.02倍。抗紫外線防曬部份,其UV吸收光譜顯示於290nm〜350 nm有明顯吸收光譜。
本研究並設計噴霧防矖乳液配方,加入2%的烏拉草萃取物約其安定性可符合貨架二年穩定性的要求,而在含有3% Ethylhexyl Methoxycinnamate 及1% Avobenzone 的配方人體體外實驗 SPF提高15%,並可減緩配方防曬系數在UVB曝曬後20%的衰退現象,且對於UVA有提升作用。
綜合結果烏拉草萃取物可應用於抗氧化、抗發炎、美白及防曬產品等化妝品產品。
而在其聚山梨醇酯海藻酸鈣微膠囊之製備的實驗中,使用高G值的海藻酸鈉溶液與聚山梨醇酯、荷荷芭油、烏拉草萃取液及水乳化後,經由注射筒式泵浦將其滴定入乳酸鈣溶液中使其成為微膠囊膠體。
結果發現加入聚山梨醇酯-20可以增加海藻酸鈉乳化溶液之安定性。海藻酸鈣微膠囊的直徑與真圓度則與海藻酸鈉乳化溶液中海藻酸鈉的濃度有絕對關係,因海藻酸鈉的濃度影響到乳化溶液的黏度,使用含有1%海藻酸鈉、15%荷荷芭油的條件能得到最佳的海藻酸鈣微膠囊直徑與真圓度。海藻酸鈣微膠囊成膜性及海藻酸鈣微膠囊安定性則與海藻酸鈉濃度有關,濃度較高之微膠囊其成膜性及安定性越高。
而若將聚山梨醇酯海藻酸鈣微膠囊運用在化妝品的應用,則希望能得到真圓度佳、成膜性低(易於塗抺)及安定性佳的顆粒。綜合以上需求則以含1%海藻酸鈉、15%荷荷芭油、1% 聚山梨醇酯-20配比製備之微膠囊為最佳條件。

The objective of this study was to characterize the Luteolin composition and evaluate the antioxidant activities, anti-inflammatory activities, tyrosinase inhibitory activities, UV absorption value, UV block property and photostability of the Carex meyeriana Kunth extract. We got the dark green ethanol extract and the extraction rate is 5.15%. Analysis of Luteolin in Carex meyeriana Kunth extract was using HPLC, the concentration is 1.83%, and the data showed that is 4.7 times of Thyme extract.
In the antioxidant activity, Carex meyeriana Kunth extract contains the total phenolic content (196.6 mg of gallic acid equivalents, GAE) in large amount and exhibited great DPPH free radical scavenging capacity (IC50 =58.86 ppm). The data showed the antioxidant capacity is higher than Gentian extract, Rhus chinensis Mill Chinese herbal extract and other Chinese herbal extracts. The superoxide radical scavenging rate of 1% Carex meyeriana Kunth extract was 0.40 mM trolox (trolox equivalent antioxidant capacity TEAC).
The anti-inflammatory activity of Carex meyeriana Kunth extract was measured by 5-lipoxygenase inhibition assay (IC50 =277 ppm), and that is 1.14 times of Allantoin.
In the tyrosinase inhibitory activities of Carex meyeriana Kunth extract was using tyrosine and tyrosinase to evaluate the skin-whitening activity (IC50 =37.69 ppm), and that is 0.39 times of Allantoin, 2.02 times of Artocarpus heterophyllus extract. The Carex meyeriana Kunth extract has obviously absorption peaks at 290nm〜350 nm UV absorption spectra.
A spray sunscreen recipe of Carex meyeriana Kunth extract was designed in this study. The formula stability test was very well and the shelf-life was prove about two year. In UV protection test, 1% Carex meyeriana Kunth extract can improve 0.5 SPF value, and it can decrease 20% decadent of chemical UV block in the study recipe.
Comprehensive results showed that the Carex meyeriana Kunth extract had the great potential in antioxidant and anti-inflammatory efficacy and it also had the great potential in anti-photoaging, skin-whitening and increase the UV-block efficacy which could be used as a novel multi-function ingredient for cosmetic products.
In this study, we emulsified high G alginate, polysorbate-20, Jojoba oil, Carex meyeriana Kunth extract and water to emulsified solution. Then the solution was used syringe pump to prepare the polysorbate calcium alginate microcapsules.
There are some results we could identify in this study. The first is polysorbate-20 could improve the stability of alginate emulsified solution. The second is the diameter and spherical shape of microcapsules are dependent on the viscosity of the alginate emulsified solution. We can get the best spherical shape of microcapsules when the alginate emulsified solution content of 1% alginate and 15% jojoba oil. The third is the film and stability of microcapsules are dependent on the concentration of alginate. We increase the concentration of alginate, and get the higher film and stability of microcapsules.
When the polysorbate calcium alginate microcapsule was used in the cosmetic products, it must have spherical shape, thin flim and very stable. Summery these condition, we can got the best microcapsule when the experiment recipe was 1% alginate , 15% jojoba oil and 1% polysorbate-20.

中文摘要 Ⅰ
英文摘要 IV
目錄 VII
圖目錄 X
表目錄 XII
壹、前言 1
PART I 烏拉草萃取物之化妝品活性探討 1
一、極地植物化妝品市場趨勢 1
二、極地植物與抗氧化作用 4
三、極地植物的美白與酪胺酸酶抑制作用 7
四、極地植物抗發炎活性與脂質氧合酶抑制法 13
五、化妝品防矖機制 16
六、極地植物化妝品生物活性文獻彙整 18
七、烏拉草簡介 19
(一) 烏拉草的植物型態 19
(二) 烏拉草的生物活性 21
八、研究動機 25
PART II聚山梨醇酯海藻酸鈣微膠囊之製備 26
一、海藻酸鈣膠體簡介 26
二、海藻酸鈣膠體製備原理海藻酸鈣膠體簡介 26
三、海藻酸鈉溶液的M/G比例 27
四、海藻酸鈉溶液的黏度 27
五、影響海藻膠體顆粒大小及形狀之因素 27
六、影響海藻膠體強度的因子 28
七、海藻酸膠體包覆油脂因子 29
八、研究動機 30
貳、材料與方法 32
PART I 烏拉草萃取物之化妝品活性探討 32
一、研究流程 32
二、烏拉草之萃取 33
三、木犀草素含量分析 34
四、烏拉草萃取物之抗氧化活性測試 35
(一) 總酚含量測定 36
(二) DPPH 自由基清除率試驗 37
(三) 清除 ABTS .+ 總抗氧化能力試驗 37
五、抗發炎活性-體外脂質氧合酶抑制法 39
六、酪胺酸酶活性抑制能力測定美白活性 40
七、烏拉草萃取物吸收光譜測定 41
八、烏拉草噴霧防曬乳配方設計 41
九、烏拉草噴霧防曬乳物化性及安定性測試 45
十、CK Sunscreen之體外UVB防曬係數測定 46
十一、CK Sunscreen之光安定性測定 48
PART II聚山梨醇酯海藻酸鈣微膠囊之製備 49
一、研究流程 49
二、海藻酸鈉乳化溶液配製 50
三、海藻酸鈉乳化溶液安定性(emulsion stability,ES)測試 51
四、微膠囊製備條件探討 53
五、海藻酸鈣微膠囊製備 53
六、海藻酸鈣微膠囊外形測量 54
七、海藻酸鈣微膠囊成膜效率測試 55
八、海藻酸鈣微膠囊安定性測試 56
參、結果與討論 57
PART I 烏拉草萃取物之化妝品活性探討 57
一、烏拉草之萃取率 57
二、木犀草素含量評估 57
三、烏拉草萃取物之抗氧化活性評估 59
(一)總酚含量評估 59
(二)DPPH自由基清除能力能力評估 60
(三)清除 ABTS. + 自由基抗氧化能力評估 60
四、體外脂質氧合酶抑制能力評估 64
五、酪胺酸酶活性抑制能力測定美白活性評估 65
六、烏拉草萃取物吸收光譜結果分析 67
七、烏拉草噴霧防曬乳(CK Sunscreen) 物化性及安定性分析 68
八、烏拉草防曬乳(CK Sunscreen)之體外UV防護能力評估 68
PART II聚山梨醇酯海藻酸鈣微膠囊之製備 81
一、海藻酸鈉乳化溶液安定性(emulsion stability,ES) 分析 71
二、海藻酸鈣微膠囊粒徑分析 71
三、海藻酸鈣微膠囊成膜性評估 75
四、海藻酸鈣微膠囊安定性評估 75
五、海藻酸鈣微膠囊綜合比較 78
肆、結論 80
伍、參考文獻 83
1. Choi, C. (2006). Seminars in cutaneous medicine and surgery. Cosmeceuticals, 25, 163 -168.
2. Jansen, M. A. K., Gaba, V., Greenberg, B.M. (1998). Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends in Plant Science, 3(4), 131-135.
3. Teramura, A. H., Sullivan, J.H. (1994). Effects of UV-B radiation on photosynthesis and growth of terrestrial plants. Photosynthesis Research, 39(3), 463-473.
4. de Freitas, Z. M. F., Santos, E.P., Rocha, J.F., Dellamora-Ortiz, G.M., Gonçalves, J.C.S. (2005). A new sunscreen of the cinnamate class: Synthesis and enzymatic hydrolysis evaluation of glyceryl esters of p-methoxycinnamic acid. European Journal of Pharmaceutical Sciences, 25(1), 67-72.
5. Said, T., Dutot, M., Martin, C., Beaudeux, J.L., Boucher, C., Enee, E., Baudouin, C., Warnet, J.M., Rat, P. (2007). Cytoprotective effect against UV-induced DNA damage and oxidative stress: role of new biological UV filter. European Journal of Pharmaceutical Sciences, 30(3), 203-210.
6. Rho, H. S., Ahn, S.M., Lee, B.C., Kim, M.K., Ghimeray, A.K., Jin, C.W., Cho, D.H. (2010). Changes in flavonoid content and tyrosinase inhibitory activity in kenaf leaf extract after far-infrared treatment. Bioorganic &; Medicinal Chemistry Letters, 20(24), 7534-7536.
7. Si, Y. X., Wang, Z.J., Park, D., Chung, H.Y., Wang, S.F., Yan, L., Yang, J.M., Qian, G.Y., Yin, S.J., Park, Y.D. (2011). Effect of hesperetin on tyrosinase: Inhibition kinetics integrated computational simulation study. International Journal of Biological Macromolecules.
8. Kubo, I., Kinst-Hori, I., Chaudhuri, S.K., Kubo, Y., Sánchez, Y., Ogura, T. (2000). Flavonols from Heterotheca inuloides : Tyrosinase Inhibitory Activity and Structural Criteria. Bioorganic &; Medicinal Chemistry, 8(7), 1749-1755.
9. Jiménez-Atiénzar, M., Escribano, J., Cabanes, J., Gandía-Herrero, F., García-Carmona, F. (2005). Oxidation of the flavonoid eriodictyol by tyrosinase. Plant Physiology and Biochemistry, 43(9), 866-873.
10. Liu, M., Cao, B., Zhou, S., Liu, Y. (2012). Responses of the flavonoid pathway to UV-B radiation stress and the correlation with the lipid antioxidant characteristics in the desert plant Caryopteris mongolica Acta Ecologica Sinica, 32(3), 150-155.
11. Liakopoulos, G., Stavrianakou, S., Karabourniotis, G. (2006). Trichome layers versus dehaired lamina of Olea europaea leaves: differences in flavonoid distribution, UV-absorbing capacity, and wax yield. Environmental and Experimental Botany, 55(3), 294-304.
12. Chicaro, P., Pinto, E., Colepicolo, P., Lopes, J.L.C., Lopes, N.P. (2004). Flavonoids from Lychnophora passerina (Asteraceae): potential antioxidants and UV-protectants. Biochemical Systematics and Ecology, 32(3), 239-243.
13. Dinakar, C., Djilianov, D., Bartels, D. (2012). Photosynthesis in desiccation tolerant plants: Energy metabolism and antioxidative stress defense. Plant Science, 182, 29-41.
14. Gođevac, D., Zdunić, G., Šavikin, K., Vajs, V., &; Menković, N. (2008). Antioxidant activity of nine Fabaceae species growing in Serbia and Montenegro. Fitoterapia, 79(3), 185-187.
15. Steenkamp, V., Gouws, M., Gulumian, M., Elgorashi, E., &; Van Staden, J. (2006). Studies on antibacterial, anti-inflammatory and antioxidant activity of herbal remedies used in the treatment of benign prostatic hyperplasia and prostatitis. Journal of Ethnopharmacology, 103(1), 71-75.
16. Joubert, E., Winterton, P., Britz, T. J., &; Ferreira, D. (2004). Superoxide anion and α, α-diphenyl-β-picrylhydrazyl radical scavenging capacity of rooibos ( Aspalathus linearis ) aqueous extracts, crude phenolic fractions, tannin and flavonoids. Food Research International, 37(2), 133-138.
17. Negi, P., Chauhan, A., Sadia, G., Rohinishree, Y., &; Ramteke, R. (2005). Antioxidant and antibacterial activities of various seabuckthorn ( Hippophae rhamnoides L.) seed extracts. Food Chemistry, 92(1), 119-124.
18. Solano, F., Briganti, S., Picardo, M., &; Ghanem, G. (2006). Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Research, 19(6), 550-571.
19. Gonnet, J.-F. (1975). Flavonol glycosides of Anthyllis vulneraria leaves. Phytochemistry, 14.
20. Baliga, M. S., Baliga, B. R. V., Kandathil, S. M., Bhat, H. P., &; Vayalil, P. K. (2011). A review of the chemistry and pharmacology of the date fruits (Phoenix dactylifera L.). Food Research International, 44(7), 1812-1822.
21. Katz, A. E. (2002). Flavonoid and botanical approaches to prostate health. The Journal of Alternative &; Complementary Medicine, 8(6), 813-821.
22. Thiem, B. (2003). Rubus chamaemorus L.- a boreal plant rich in biologically active metabolites: a review. Biological Letters, 40(1), 3-13.
23. Chen, C., Xu, X.-M., Chen, Y., Yu, M.-Y., Wen, F.-Y., &; Zhang, H. (2013). Identification, quantification and antioxidant activity of acylated flavonol glycosides from sea buckthorn (Hippophae rhamnoides ssp. sinensis). Food Chemistry.
24. Dixon, R. A., &; Steele, C. L. (1999). Flavonoids and isoflavonoids–a gold mine for metabolic engineering. Trends in Plant Science, 4(10), 394-400.
25. Heim, K. E., Tagliaferro, A.R., Bobilya, D.J. (2002). Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. The Journal of Nutritional Biochemistry, 13(10), 572-584.
26. Hodek, P., Trefil, P., Stiborová, M. (2002). Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450. Chemico-Biological Interactions, 139(1), 1-21.
27. Jovanovic, S. V., Jankovic, I., &; Josimovic, L. (1992). Electron-transfer reactions of alkylperoxy radicals. Journal of the American Chemical Society, 114(23), 9018-9021.
28. Wardman, P. (1989). Reduction potentials of one-electron couples involving free radicals in aqueous solution: American Chemical Society and the American Institute of Physics for the National Institute of Standards and Technology.
29. Ferrali, M., Signorini, C., Caciotti, B., Sugherini, L., Ciccoli, L., Giachetti, D., &; Comporti, M. (1997). Protection against oxidative damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron chelating activity. FEBS Letters, 416(2), 123-129.
30. Lopez-Lazaro, M. (2009). Distribution and biological activities of the flavonoid luteolin. Mini reviews in Medicinal Chemistry, 9(1), 31-59.
31. Elliott, A. J., Scheiber, S. A., Thomas, C., &; Pardini, R. S. (1992). Inhibition of glutathione reductase by flavonoids: a structure-activity study. Biochemical Pharmacology, 44(8), 1603-1608.
32. Cos, P., Ying, L., Calomme, M., Hu, J. P., Cimanga, K., Van Poel, B., . . . Berghe, D. V. (1998). Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. Journal of Natural Products, 61(1), 71-76.
33. Gutiérrez-Venegas, G., &; Bando-Campos, C. G. (2010). The flavonoids luteolin and quercetagetin inhibit lipoteichoic acid actions on H9c2 cardiomyocytes. International Immunopharmacology, 10(9), 1003-1009.
34. Wood, J., Gibbons, N., &; Schallreuter, K. (2006). Melanocortins in human melanocytes. Cellular and Molecular Biology (Noisy-le-Grand, France), 52(2), 75.
35. Leenutaphong, V., Nettakul, A., &; Rattanasuwon, P. (1999). Topical isotretinoin for melasma in Thai patients: a vehicle-controlled clinical trial. Journal of the Medical Association of Thailand= Chotmaihet thangphaet, 82(9), 868.
36. Zhou, J. (2002). Introduction of the whitening cosmetics. A news letter of Food and Drug, 256, 3-5.
37. Chen, J. S., Wei, C. I., &; Marshall, M. R. (1991). Inhibition mechanism of kojic acid on polyphenol oxidase. Journal of Agricultural and Food Chemistry, 39(11), 1897-1901.
38. Ros, J. R., Rodriguez-Lopez, J. N., &; Garcia-Canovas, F. (1993). Effect of L-ascorbic acid on the monophenolase activity of tyrosinase. Biochemical Journal, 295(Pt 1), 309.
39. Lee, J. H., Park, J. G., Lim, S. H., Kim, J. Y., Ahn, K. Y., KIM, M. Y., &; Park, Y. M. (2006). Localized intradermal microinjection of tranexamic acid for treatment of melasma in Asian patients: a preliminary clinical trial. Dermatologic Surgery, 32(5), 626-631.
40. Ishihara, Y., Oka, M., Tsunakawa, M., Tomita, K., Hatori, M., Yamamoto, H., . . . Oki, T. (1991). Melanostatin, a new melanin synthesis inhibitor. Production, isolation, chemical properties, structure and biological activity. The Journal of Antibiotics, 44(1), 25.
41. Slavin, J. W. (1998). Considerations in alpha hydroxy acid peels. Clinics in Plastic Surgery, 25(1), 45.
42. Hakozaki, T., Minwalla, L., Zhuang, J., Chhoa, M., Matsubara, A., Miyamoto, K., . . . Boissy, R. (2002). The effect of niacinamide on reducing cutaneous pigmentation and suppression of melanosome transfer. British Journal of Dermatology, 147(1), 20-31.
43. Greatens, A., Hakozaki, T., Koshoffer, A., Epstein, H., Schwemberger, S., Babcock, G., . . . Wickett, R. R. (2005). Effective inhibition of melanosome transfer to keratinocytes by lectins and niacinamide is reversible. Experimental Dermatology, 14(7), 498-508.
44. Lee, K. M., Lee, K. W., Byun, S., Jung, S. K., Seo, S. K., Heo, Y.-S., . . . Dong, Z. (2010). 5-deoxykaempferol plays a potential therapeutic role by targeting multiple signaling pathways in skin cancer. Cancer Prevention Research, 3(4), 454-465.
45. Catchpole, O., Perry, N., Da Silva, B., Grey, J., &; Smallfield, B. (2002). Supercritical extraction of herbs I: Saw Palmetto, St John's wort, Kava root, and Echinacea. The Journal of Supercritical Fluids, 22(2), 129-138.
46. Goldmann, W. H., Sharma, A. L., Currier, S. J., Johnston, P. D., Rana, A., &; Sharma, C. P. (2001). SAW PALMETTO BERRY EXTRACT INHIBITS CELL GROWTH AND COX‐2 EXPRESSION IN PROSTATIC CANCER CELLS. Cell Biology International, 25(11), 1117-1124.
47. Li, T. S., Beveridge, T. H., &; Drover, J. C. (2007). Phytosterol content of sea buckthorn ( Hippophae rhamnoides L.) seed oil: Extraction and identification. Food Chemistry, 101(4), 1633-1639.
48. Ganju, L., Padwad, Y., Singh, R., Karan, D., Chanda, S., Chopra, M. K., . . . Sawhney, R. C. (2005). Anti-inflammatory activity of Seabuckthorn (Hippophae rhamnoides) leaves. International Immunopharmacology, 5(12), 1675-1684.
49. Jayashankar, B., Mishra, K., Kumar, M., Udayasankar, K., Misra, K., Ganju, L., &; Singh, S. (2012). A supercritical CO2 extract from seabuckthorn leaves inhibits pro-inflammatory mediators via inhibition of mitogen activated protein kinase p38 and transcription factor nuclear factor-κB. International Immunopharmacology.
50. Musser, J. H., &; Kreft, A. F. (1992). 5-Lipoxygenase: properties, pharmacology, and the quinolinyl (bridged) aryl class of inhibitors. Journal of Medicinal Chemistry, 35(14), 2501-2524.
51. Rådmark, O., Werz, O., Steinhilber, D., &; Samuelsson, B. (2007). 5-Lipoxygenase: regulation of expression and enzyme activity. Trends in Biochemical Sciences, 32(7), 332-341.
52. Miyamura, Y., Coelho, S.G., Wolber, R., Miller, S.A., Wakamatsu, K., Zmudzka, B.Z., Ito, S., Smuda, C., Passeron, T., Choi, W. (2006). Regulation of human skin pigmentation and responses to ultraviolet radiation. Pigment Cell Research, 20(1), 2-13.
53. Velasco, M. V. R., Sarruf, F.D., Salgado-Santos, I.M.N., Haroutiounian-Filho, C.A., Kaneko, T.M., Baby, A.R. (2008). Broad spectrum bioactive sunscreens. International Journal of Pharmaceutics, 363(1), 50-57.
54. Shukla, S. K., Chaudhary, P., Kumar, I. P., Samanta, N., Afrin, F., Gupta, M. L., . . . Sharma, R. K. (2006). Protection from radiation‐induced mitochondrial and genomic DNA damage by an extract of Hippophae rhamnoides. Environmental and Molecular Mutagenesis, 47(9), 647-656.
55. Zeb, A. (2004). Important therapeutic uses of sea buckthorn (Hippophae): a review. Journal of Biological Sciences, 4(5), 687-693.
56. 中國科學院中國植物志編輯委員會. (2000). 中國植物志[M]. 第12卷(科學出版社), 103.
57. 鄭盅輝, 劉. (2004(6)). 抗真菌葯物的研究近況[J]. 医葯科研開發信息, 9-13.
58. 余克嬌. (2005). 烏拉草化學成分和藥理作用的初步研究. 瀋陽藥科大學.
59. Mao, J., Zhang, LM, Xu, F. (2012). Fractional and structural characterization of alkaline lignins from Carex Meyeriana Kunth. Cellulose Chemistry and Technology, 46(3), 193.
60. Choi, E. M., Lee, Y.S. (2010). Luteolin suppresses IL-1 [beta]-induced cytokines and MMPs production via p38 MAPK, JNK, NF-kappaB and AP-1 activation in human synovial sarcoma cell line, SW982. Food and Chemical Toxicology, 48(10), 2607-2611.
61. Bazylko, A., Strzelecka, H. (2007). A HPTLC densitometric determination of luteolin in Thymus vulgaris and its extracts. Fitoterapia, 78(6), 391-395.
62. Rice-Evans, C. A., Miller, N.J., Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20(7), 933-956.
63. Ko, F. N., Chu, C. C., Lin, C. N., Chang, C. C., &; Teng, C.-M. (1998). Isoorientin-6 ″-O-glucoside, a water-soluble antioxidant isolated from Gentiana arisanensis. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1389(2), 81-90.
64. Lemanska, K., van der Woude, H., Szymusiak, H., Boersma, M. G., Gliszczynska-Swiglo, A., Rietjens, I. M., &; Tyrakowska, B. (2004). The effect of catechol O-methylation on radical scavenging characteristics of quercetin and luteolin-A mechanistic insight. Free Radical Research, 38(6), 639-647.
65. Brown, J. E., Rice-Evans, C.A. (1998). Luteolin-rich artichoke extract protects low density lipoprotein from oxidation in vitro. Free Radical Research, 29(3), 247-255.
66. Mira, L., Tereza Fernandez, M., Santos, M., Rocha, R., Helena Florêncio, M., &; Jennings, K. R. (2002). Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radical Research, 36(11), 1199-1208.
67. Cheng, I. F., &; Breen, K. (2000). On the ability of four flavonoids, baicilein, luteolin, naringenin, and quercetin, to suppress the Fenton reaction of the iron-ATP complex. Biometals, 13(1), 77-83.
68. Cai, Q., Rahn, R. O., &; Zhang, R. (1997). Dietary flavonoids, quercetin, luteolin and genistein, reduce oxidative DNA damage and lipid peroxidation and quench free radicals. Cancer Letters, 119(1), 99-107.
69. Ma, X., Li, Y., Gao, Q., Ye, Z., Lu, X., Wang, H., Jiang, H., Bruce, I.C., Xia, Q. (2008). Inhibition of superoxide anion-mediated impairment of endothelium by treatment with luteolin and apigenin in rat mesenteric artery. Life Sciences, 83(3), 110-117.
70. Hu, C., Kitts, D.D. (2004). Luteolin and luteolin-7-O-glucoside from dandelion flower suppress iNOS and COX-2 in RAW264. 7 cells. Molecular and Cellular Biochemistry, 265(1), 107-113.
71. Kong, L., Wolfender, J.-L., Cheng, C. H., Hostettmann, K., &; Tan, R. X. (2007). Xanthine oxidase inhibitors from Brandisia hancei. Planta Medica, 65(08), 744-746.
72. Choi, B.-M., Lim, D.-W., Lee, J.-A., Gao, S. S., Kwon, D. Y., &; Kim, B.-R. (2008). Luteolin suppresses cisplatin-induced apoptosis in auditory cells: possible mediation through induction of heme oxygenase-1 expression. Journal of Medicinal Food, 11(2), 230-236.
73. Qiusheng, Z., Yuntao, Z., Rongliang, Z., Dean, G., &; Changling, L. (2005). Effects of verbascoside and luteolin on oxidative damage in brain of heroin treated mice. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 60(7), 539-543.
74. Manju, V., Balasubramaniyan, V., &; Nalini, N. (2005). Rat colonic lipid peroxidation and antioxidant status: the effects of dietary luteolin on 1, 2-dimethylhydrazine challenge. Cellular &; Molecular Biology Letters, 10(3), 535.
75. Kim, J. S., Jobin, C. (2005). The flavonoid luteolin prevents lipopolysaccharide‐induced NF‐κB signalling and gene expression by blocking IκB kinase activity in intestinal epithelial cells and bone‐marrow derived dendritic cells. Immunology, 115(3), 375-387.
76. Xagorari, A., Papapetropoulos, A., Mauromatis, A., Economou, M., Fotsis, T., &; Roussos, C. (2001). Luteolin inhibits an endotoxin-stimulated phosphorylation cascade and proinflammatory cytokine production in macrophages. Journal of Pharmacology and Experimental Therapeutics, 296(1), 181-187.
77. Chen, C.-C., Chow, M.-P., Huang, W.-C., Lin, Y.-C., &; Chang, Y.-J. (2004). Flavonoids inhibit tumor necrosis factor-α-induced up-regulation of intercellular adhesion molecule-1 (ICAM-1) in respiratory epithelial cells through activator protein-1 and nuclear factor-κB: structure-activity relationships. Molecular Pharmacology, 66(3), 683-693.
78. Kim, E.-K., Kwon, K.-B., Song, M.-Y., Han, M.-J., Lee, J.-H., Lee, Y.-R., . . . Park, J.-W. (2007). Flavonoids Protect Against Cytokine-Induced Pancreatic [beta]-Cell Damage Through Suppression of Nuclear Factor [kappa] B Activation. Pancreas, 35(4), e1-e9.
79. Arung, E. T., Shimizu, K., Tanaka, H., Kondo, R. (2010). 3-Prenyl luteolin, a new prenylated flavone with melanin biosynthesis inhibitory activity from wood of Artocarpus heterophyllus Fitoterapia (Vol. 81, pp. 640-643).
80. Verschooten, L., Smaers, K., Van Kelst, S., Proby, C., Maes, D., Declercq, L., Agostinis, P., Garmyn, M. (2010). The flavonoid luteolin increases the resistance of normal, but not malignant keratinocytes, against UVB-induced apoptosis. Journal of Investigative Dermatology, 130(9), 2277-2285.
81. Fischer, F., Zufferey, E., Bourgeois, J.M., Héritier, J., Micaux, F. (2011). UV-ABC screens of luteolin derivatives compared to edelweiss extract. Journal of Photochemistry and Photobiology B: Biology, 103(1), 8-15.
82. Chan, E.-S., Wong, S.-L., Lee, P.-P., Lee, J.-S., Ti, T. B., Zhang, Z., . . . Yim, Z.-H. (2011). Effects of starch filler on the physical properties of lyophilized calcium–alginate beads and the viability of encapsulated cells. Carbohydrate Polymers, 83(1), 225-232.
83. Chan, E.-S., Yim, Z.-H., Phan, S.-H., Mansa, R. F., &; Ravindra, P. (2010). Encapsulation of herbal aqueous extract through absorption with ca-alginate hydrogel beads. Food and Bioproducts Processing, 88(2), 195-201.
84. Li, Y., Hu, M., Du, Y., Xiao, H., &; McClements, D. J. (2011). Control of lipase digestibility of emulsified lipids by encapsulation within calcium alginate beads. Food Hydrocolloids, 25(1), 122-130.
85. Chan, E.-S., Lee, B.-B., Ravindra, P., &; Poncelet, D. (2009). Prediction models for shape and size of ca-alginate macrobeads produced through extrusion–dripping method. Journal of Colloid and Interface Science, 338(1), 63-72.
86. Tate, T. (1864). XXX. On the magnitude of a drop of liquid formed under different circumstances. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 27(181), 176-180.
87. Fundueanu, G., Nastruzzi, C., Carpov, A., Desbrieres, J., &; Rinaudo, M. (1999). Physico-chemical characterization of Ca-alginate microparticles produced with different methods. Biomaterials, 20(1427), 1435.
88. Cheetham, P. S., Blunt, K. W., &; Bocke, C. (1979). Physical studies on cell immobilization using calcium alginate gels. Biotechnology and Bioengineering, 21(12), 2155-2168.
89. Martinsen, A., Skjåk‐Bræk, G., &; Smidsrød, O. (1989). Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads. Biotechnology and Bioengineering, 33(1), 79-89.
90. Chan, E.-S. (2011). Preparation of Ca-alginate beads containing high oil content: Influence of process variables on encapsulation efficiency and bead properties. Carbohydrate Polymers, 84(4), 1267-1275.
91. Kujala, T. S., Loponen, J.M., Klika, K.D., Pihlaja, K. (2000). Phenolics and Betacyanins in Red Beetroot (Beta v ulgaris) Root: Distribution and Effect of Cold Storage on the Content of Total Phenolics and Three Individual Compounds. Journal of Agricultural and Food Chemistry, 48(11), 5338-5342.
92. Gyamfi, M. A., Yonamine, M., Aniya, Y. (1999). Free-radical scavenging action of medicinal herbs from Ghana:: Thonningia sanguinea on experimentally-induced liver injuries. General Pharmacology, 32(6), 661-667.
93. Braca, A., De Tommasi, N., Di Bari, L., Pizza, C., Politi, M., Morelli, I. (2001). Antioxidant Principles from Bauhinia t arapotensis. Journal of Natural Products, 64(7), 892-895.
94. Luo, A. X., He, X.J., Zhou, S.D., Fan, Y.J., Luo, A.S., Chun, Z. (2010). Purification, composition analysis and antioxidant activity of the polysaccharides from Dendrobium nobile Lindl. Carbohydrate Polymers, 79(4), 1014-1019.
95. Arnao, M., Cano, A., Hernández-Ruiz, J., Garcı́a-Cánovas, F., Acosta, M. (1996). Inhibition byl-Ascorbic Acid and Other Antioxidants of the 2, 2′-Azino-bis (3-ethylbenzthiazoline-6-sulfonic Acid) Oxidation Catalyzed by Peroxidase: A New Approach for Determining Total Antioxidant Status of Foods. Analytical Biochemistry, 236(2), 255-261.
96. Miller, N., Rice-Evans, C., Davies, MJ, Gopinathan, V., Milner, A. (1993). A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Science (London, England: 1979), 84(4), 407.
97. Baylac, S., Racine, P. (2003). Inhibition of 5-lipoxygenase by essential oils and other natural fragrant extracts. International Journal of Aromatherapy, 13(2), 138-142.
98. Serpone, N., Dondi, D., Albini, A. (2007). Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products. Inorganica Chimica Acta, 360(3), 794-802.
99. 張麗卿 (Ed.). (2009). 化妝品檢驗分析: 華杏出版社.
100. Banks, W., Muir, DD, WILSON, A.G. (1981). Extension of the shelf life of cream‐based liqueurs at high ambient temperatures. International Journal of Food Science &; Technology, 16(6), 587-595.
101. 邱品齊、王修含、蔡逸姍 (Ed.). (2010). 藥妝品學 (Vol. 第二版): 台灣愛思唯爾有限公司.
102. Gaspar, L., Maia, C.P.M. (2006). Evaluation of the photostability of different UV filter combinations in a sunscreen. International Journal of Pharmaceutics, 307(2), 123.
103. Huang, X., Kakuda, Y., &; Cui, W. (2001). Hydrocolloids in emulsions: particle size distribution and interfacial activity. Food Hydrocolloids, 15(4), 533-542.
104. 陳威丞. (2004). 兼具酪胺酸酶抑制力及抗氧化力 中藥材之篩選. 大同大學生物工程學系所學位論文.
105. Turkoglu, M., Cigirgil, N. (2007). Evaluation of black tea gel and its protection potential against UV. International Journal of Cosmetic Science, 29(6), 437-442.
106. Iritani, E., Katagiri, N., Aoki, K., Shimamoto, M., &; Yoo, K. M. (2007). Determination of permeability characteristics from centrifugal flotation velocity of deformable oil droplets in O/W emulsions. Separation and Purification Technology, 58(2), 247-255.
107. Chisvert, A., Pascual-Martı́, MC, Salvador, A. (2001). Determination of the UV filters worldwide authorised in sunscreens by high-performance liquid chromatography: Use of cyclodextrins as mobile phase modifier. Journal of Chromatography A, 921(2), 207-215.
108. Chisvert, A., Salvador, A. (2002). Determination of water-soluble UV-filters in sunscreen sprays by liquid chromatography. Journal of Chromatography A, 977(2), 277-280.
109. Mielczarek, C. (2005). Acid–base properties of selected flavonoid glycosides. European Journal of Pharmaceutical Sciences, 25(2), 273-279.
110. Mukherjee, S., Mukherjee, A., Saha, A. (2005). QSAR modeling on binding affinity of diverse estrogenic flavonoids: electronic, topological and spatial functions in quantitative approximation. Journal of Molecular Structure: THEOCHEM, 715(1), 85-90.
111. Martins, H. F. P., Leal, J.P., Fernandez, M.T., Lopes, V.H.C., Cordeiro, M. (2004). Toward the prediction of the activity of antioxidants: experimental and theoretical study of the gas-phase acidities of flavonoids. Journal of the American Society for Mass Spectrometry, 15(6), 848-861.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔